-- <u><em>Current is measured in amps.</em></u> (You can use any symbol you want to represent current, but the most common one is " I ", not "Δ".)
-- <u><em>The relationship between current, voltage, and resistance is mathematically defined by Ohm's Law. </em></u>
-- <u><em>Current is the flow of electrons through a circuit.</em></u>
-- (Ohm's Law is NOT mathematically represented by the equation V=I/R.) <u><em>It should be V = I · R</em></u> .
(When solving for Resistance in a circuit and both voltage and current are known values, the equation I =V*R is not true, and not the way to solve it.) <u><em>If the resistance is what you're looking for, then the equation to use is </em></u><u><em>R = V / I</em></u><u><em> . </em></u>
<em>-- </em><u><em>If the voltage in a circuit is increased, the current will also increase.</em></u>
Firstly they have a acceleration downwards due the force downwards due they gravitational field acting on it's mass.
as it falls it gains speed, and as it gains speed the air Resistance which is a upward force actin on the drop increases, eventually the rain drop's upward and downward forces are balanced and hence there is no RESULTANT force therefore no acceleration, so the drops falls in constant speed (terminal verlocity is a better term)
Are you wondering that why is the raindrop still moving given that the forces are balanced? If so according to Newton's 1st law an object will keep moving or Remain at rest until a RESULTANT force acts on it.
Answer:
This is because it steps up or steps down electrical voltage. It multiplies either voltage (if it is a voltage transformer )or current (if it is a current transformer), but it does not multiply electrical power.
Explanation:
A transformer steps up or steps down electrical voltage, by transmitting power at a voltage, V₁ and Current I₁ at one terminal, to a voltage, V₂ and Current I₂ at its other terminals, just like a lever transmits force from one point to another. Since the power transmitted remains the same, (energy per unit time remains constant), I₁V₁ = I₂V₂ ⇒ I₁/I₂ = V₂/V₁ = n (the turns ratio of the transformer). So, the turns ratio will determine if its a step-up or step-down transformer. V₂ = nV₁. So, if V₁ > V₂ it is a step down transformer and if V₁ < V₂ it is a step-up transformer.It multiplies either voltage (if it is a voltage transformer )or current (if it is a current transformer), but it does not multiply electrical power, since P = IV = constant for the transformer.
Answer : The final volume of the balloon at this temperature and pressure is, 17582.4 L
Solution :
Using combined gas equation is,
where,
= initial pressure of gas = 1 atm
= final pressure of gas = 0.3 atm
= initial volume of gas = 6000 L
= final volume of gas = ?
= initial temperature of gas = 273 K
= final temperature of gas = 240 K
Now put all the given values in the above equation, we get the final pressure of gas.

Therefore, the final volume of the balloon at this temperature and pressure is, 17582.4 L