Answer:
(a) 42 N
(b)36.7 N
Explanation:
Nomenclature
F= force test line (N)
W : fish weight (N)
Problem development
(a) Calculating of weight of the heaviest fish that can be pulled up vertically, when the line is reeled in at constant speed
We apply Newton's first law of equlibrio because the system moves at constant speed:
∑Fy =0
F-W= 0
42N -W =0
W = 42N
(b) Calculating of weight of the heaviest fish that can be pulled up vertically, when the line is reeled with an acceleration whose magnitude is 1.41 m/s²
We apply Newton's second law because the system moves at constant acceleration:
m= W/g , m= W/9.8 , m:fish mass , W: fish weight g:acceleration due to gravity
∑Fy =m*a
m= W/g , m= W/9.8 , m:fish mass , W: fish weight g:acceleration due to gravity
F-W= ( W/9.8 )*a
42-W= ( W/9.8 )*1.41
42= W+0.1439W
42=1.1439W
W= 42/1.1439
W= 36.7 N
Answer:
Frequency = 3.19 * 10^14 Hz or 1/s
Explanation:
Relationship b/w frequency and wavelength can be expressed as:
C = wavelength * frequency, where c is speed of light in vacuum which is 3.0*10^8 m/s.
Now simply input value (but before that convert wavelength into meters to match the units, you do this by multiply it by 10^-9 so it will be 940*10^-9)
3.0 * 10^8 = Frequency * 940 x 10^-9
Frequency = 3.19 * 10^14 Hz or 1/s
Answer:
1963.93 Moles
Explanation:
-We know the standard conversion ratio for the volume of a mole is
Given volume of rooms as 
Convert the volume into liters:
#From our conversion ratio above, we get the volume of air molecules in moles as:

Hence, the volume of air molecules is 1963.93 Moles
A, something to remember is that if the numbers are even the answer too will be even. Every time hope this helps :>