Answer:
49 N
Explanation:
In order to move the box at constant speed, the acceleration of the box must be zero (a=0): this means, according to Newton's second law,
F = ma
that the net force acting on the box, F, must be zero as well.
Here there are two forces acting on the box in the horizontal direction while it is moving:
- The force of push applied by the guy, F
- The frictional force, 
For an object moving on a flat surface, the frictional force is given by

where
is the coefficient of friction
m is the mass of the box
g is the acceleration of gravity
So the equation of the forces becomes

And substituting:

We find the force that must be applied by the guy:

Answer:

Explanation:
The strength of the electric field produced by a charge Q is given by

where
Q is the charge
r is the distance from the charge
k is the Coulomb's constant
In this problem, the electric field that can be detected by the fish is

and the fish can detect the electric field at a distance of

Substituting these numbers into the equation and solving for Q, we find the amount of charge needed:

The gravitational force between two masses m₁ and m₂ is

where
G = 6.67408 x 10⁻¹¹ m³/(kg-s²), the gravitational constant
d = distance between the masses.
Given:
F = 1.5 x 10⁻¹⁰ N
m₁ = 0.50 kg
m₂ = 0.1 kg
Therefore
1.5 x 10⁻¹⁰ N = (6.67408 x 10⁻¹¹ m³/(kg-s²))*[(0.5*0.1)/(d m)²]
d² = [(6.67408x10⁻¹¹)*(0.5*0.1)]/1.5x10⁻¹⁰
= 0.0222
d = 0.1492 m = 149.2 mm
Answer: 149.2 mm
The independent is how long the ball goes and the dependant is the distance how far the ball goes.
Answer:
The correct answer is <u><em>C. Homeostasis</em></u>
Explanation:
<u><em>Homeostasis</em></u> describes the relatively constant internal physical conditions of an organism.