Answer:
(a) Average number of cars in the system is 1
(b) Average time a car waits is 12 minutes
(c) Average time a car spends in the system is 2 minutes
(d) Probability that an arrival has to wait for service is 0.08.
Step-by-step explanation:
We are given the following
Arrival Rate, A = 2.5
Service Rate B = 5
(a) Average Number of Cars in the System is determined by dividing the Arrival Rate A by the difference between the Service Rate B, and Arrival Rate A.
Average number of cars = A/(B - A)
= 2.5/(5 - 2.5)
= 2.5/2.5 = 1
There is an average of 1 car.
(b) Average time a car waits = A/B(B - A)
= 2.5/5(5 - 2.5)
= 2.5/(5 × 2.5)
= 2.5/12.5
= 1/5
= 0.20 hours
Which is 12 minutes
(c) Average time a car spends in the system is the ratio of the average time a car waits to the service rate.
Average time = 0.2/5
= 0.04 hours
= 2.4 minutes
Which is approximately 2 minutes.
(d) Probability that an arrival has to wait for service is the ratio of the average time a car waits to rate of arrivals.
Probability = 0.2/2.5
= 0.08