Answer:
Explanation:
depending on the activity series there will probably be a single replacement reaction possibly heat or color change and the copper precipitate out of solution
Answer:
20619.4793 years
Explanation:
The half life of carbon-14 = 5730 years
The formula for the half life for a first order kinetic reaction is:
Where,
is the half life
k is the rate constant.
Thus rate constant is:
5730 years=ln(2)/k
k = 1.21×10⁻⁴ years ⁻¹
Using integrated rate law as:

Where,
is the concentration at time t
is the initial concentration
Given that the final concentration contains 8.25 % of the original quantity which means that:

So,
ln(.0825)= -1.21×10⁻⁴×t
<u>
t = 20619.4793 years</u>
<u></u>
1.70 × 10³ seconds
<h3>Explanation </h3>
+ 2 e⁻ → 
It takes two moles of electrons to reduce one mole of cobalt (II) ions and deposit one mole of cobalt.
Cobalt has an atomic mass of 58.933 g/mol. 0.500 grams of Co contains
of Co atoms. It would take
of electrons to reduce cobalt (II) ions and produce the
of cobalt atoms.
Refer to the Faraday's constant, each mole of electrons has a charge of around 96 485 columbs. The 0.01697 mol of electrons will have a charge of
. A current of 0.961 A delivers 0.961 C of charge in one single second. It will take
to transfer all these charge and deposit 0.500 g of Co.
Answer:
12 moles of cesium xenon heptafluoride
Explanation:
The reaction of cesium fluoride with xenon hexafluoride is CeF + XeF6 -> CeXeF7 and the reaction is balanced as written. So the mole ratio is 1:1:1. We are given 12 moles of CeF and 14 moles of XeF6 are reacting, but after the 12 moles of CeF react completely, the reaction will stop as we have run out of one of our reactants. So only 12 moles of CeXeF7 will be produced.