Answer:
90.3 kJ/mol
Explanation:
Let's consider the following thermochemical equation.
2 NO(g) + O₂(g) → 2 NO₂(g) ∆H°rxn = –114.2 kJ
We can find the standard enthalpy of formation for NO using the following expression.
∆H°rxn = 2 mol × ΔH°f(NO₂(g)) - 2 mol × ΔH°f(NO(g)) - 1 mol × ΔH°f(O₂(g))
∆H°rxn = 2 mol × ΔH°f(NO₂(g)) - 2 mol × ΔH°f(NO(g)) - 1 mol × 0 kJ/mol
∆H°rxn = 2 mol × ΔH°f(NO₂(g)) - 2 mol × ΔH°f(NO(g))
ΔH°f(NO(g)) = (2 mol × ΔH°f(NO₂(g)) - ∆H°rxn) / 2 mol
ΔH°f(NO(g)) = (2 mol × 33.2 kJ/mol + 114.2 kJ) / 2 mol
ΔH°f(NO(g)) = 90.3 kJ/mol
Https://www.google.com/search?q=how+to+solve+fir+atomic+mass+in+chemisty&ie=UTF-8&oe=UTF-8&hl=en-us&client=safari#kpvalbx=1
Here is the link to a great video that explains your question nicely, hope this helps.
Answer:
The equivalent circuit for the electrode while the electrolyte gel is fresh
From the uploaded diagram the part A is the electrolyte, the part part B is the electrolyte gel when is fresh and the part C is the surface of the skin
Now as the electrolyte gel start to dry out the resistance
of the gel begins to increase and this starts to limit the flow of current . Now when the gel is then completely dried out the resistance of the gel
then increases to infinity and this in turn cut off flow of current.
The diagram illustrating this is shown on the second uploaded image
Explanation:
Answer:
Oil is a fossil fuel and timber or wood and wind is not. Hope this helps!
Answer:
71.5g
Explanation:
The reaction equation is given as:
C + O₂ → CO₂
Mass of C = 42g
Mass of O₂ = 52g
Unknown:
Mass of CO₂ produced = ?
Solution
Now to solve this problem, we have to find limiting reactant which is the one given in short supply in this reaction.
The extent of the reaction is controlled by this reactant.
Find the number of moles of the given species;
Number of moles =
Number of moles of C =
= 3.5mol
Number of moles of O₂ =
= 1.63mol
Now;
From the balanced reaction equation;
1 mole of C reacted with 1 mole of O₂
We see that C is in excess and O₂ is the limiting reactant.
1 mole of O₂ will produce 1 mole of CO₂
So; 1.63mole of O₂ will produce 1.63 mole of CO₂
Mass of CO₂ = number of moles x molar mass
Molar mass of CO₂ = 44g/mol
Mass of CO₂ = 1.63 x 44 = 71.5g