1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vekshin1
3 years ago
15

An inductor in an LC circuit has a maximum current of 2.4 A and a maximum energy of 56 mJ.

Physics
1 answer:
Harrizon [31]3 years ago
3 0

Answer:

The energy stored in the capacitor, when the current in the inductor is 1.2 A, is 41.6 mJ.

Explanation:

In a LC oscillating circuit, the energy is stored in the electric field (between the plates of the capacitor) and in the magnetic field (surrounding the wires of the inductor).

At any time, the sum of both energies can be expressed as follows:

E = 1/2 Q² / C   +  1/2 L I²

In this type of circuit, energy oscillates, which means that it is exchanging between both fields all time.

When the capacitor is completely discharged, all the energy is stored in the magnetic field, and at that time, the current is maximum.

The total energy, when I is maximum, can be written as follows:

E = 1/2 L I² (1)

In our case, when I= 2.4A, E= 56 mJ.

So, we can find out the value of L, which will allow us to know the value of the magnetic energy at any time, having the value of the instantaneous current.

Solving for L in (1):

L = 2 *.56 mJ / (2.4)² A² = 20 mH

The next step is getting the value of the energy stored in the inductor, when I = 1.2 A, as follows:

Em = 1/2 *20 mH.* (1.2)² A² = 14.4 mJ

As the total energy must be always the same, i.e., 56 mJ, the energy stored in the capacitor, assuming no losses, must be the difference between the total energy and the one stored in the magnetic field:

Ec = 56 mJ - 14.4 mJ = 41.6 mJ

You might be interested in
What are the milestones of modern phyiscs?
nlexa [21]

Answer:

The articles appearing under "Milestones in Physics" will give an insight into special events or situations that have been decisive for the evolution of Physics

6 0
2 years ago
Read 2 more answers
Very far from earth (at R- oo), a spacecraft has run out of fuel and its kinetic energy is zero. If only the gravitational force
Margaret [11]

Answer:

Speed of the spacecraft right before the collision: \displaystyle \sqrt{\frac{2\, G\cdot M_\text{e}}{R\text{e}}}.

Assumption: the earth is exactly spherical with a uniform density.

Explanation:

This question could be solved using the conservation of energy.

The mechanical energy of this spacecraft is the sum of:

  • the kinetic energy of this spacecraft, and
  • the (gravitational) potential energy of this spacecraft.

Let m denote the mass of this spacecraft. At a distance of R from the center of the earth (with mass M_\text{e}), the gravitational potential energy (\mathrm{GPE}) of this spacecraft would be:

\displaystyle \text{GPE} = -\frac{G \cdot M_\text{e}\cdot m}{R}.

Initially, R (the denominator of this fraction) is infinitely large. Therefore, the initial value of \mathrm{GPE} will be infinitely close to zero.

On the other hand, the question states that the initial kinetic energy (\rm KE) of this spacecraft is also zero. Therefore, the initial mechanical energy of this spacecraft would be zero.

Right before the collision, the spacecraft would be very close to the surface of the earth. The distance R between the spacecraft and the center of the earth would be approximately equal to R_\text{e}, the radius of the earth.

The \mathrm{GPE} of the spacecraft at that moment would be:

\displaystyle \text{GPE} = -\frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}.

Subtract this value from zero to find the loss in the \rm GPE of this spacecraft:

\begin{aligned}\text{GPE change} &= \text{Initial GPE} - \text{Final GPE} \\ &= 0 - \left(-\frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}\right) = \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}} \end{aligned}

Assume that gravitational pull is the only force on the spacecraft. The size of the loss in the \rm GPE of this spacecraft would be equal to the size of the gain in its \rm KE.

Therefore, right before collision, the \rm KE of this spacecraft would be:

\begin{aligned}& \text{Initial KE} + \text{KE change} \\ &= \text{Initial KE} + (-\text{GPE change}) \\ &= 0 + \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}} \\ &= \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}\end{aligned}.

On the other hand, let v denote the speed of this spacecraft. The following equation that relates v\! and m to \rm KE:

\displaystyle \text{KE} = \frac{1}{2}\, m \cdot v^2.

Rearrange this equation to find an equation for v:

\displaystyle v = \sqrt{\frac{2\, \text{KE}}{m}}.

It is already found that right before the collision, \displaystyle \text{KE} = \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}. Make use of this equation to find v at that moment:

\begin{aligned}v &= \sqrt{\frac{2\, \text{KE}}{m}} \\ &= \sqrt{\frac{2\, G\cdot M_\text{e} \cdot m}{R_\text{e}\cdot m}} = \sqrt{\frac{2\, G\cdot M_\text{e}}{R_\text{e}}}\end{aligned}.

6 0
3 years ago
How long did it take our planet to produce the fossil fuels we're using today?
Vesna [10]

Answer:

It takes millions sometimes hundreds of millions Explanation:

3 0
3 years ago
Read 2 more answers
A student is trying to determine the acceleration of a feather as she drops it to the ground. if the student is looking to achie
Anna [14]

The coordinate system should have the origin at the point where the feather is dropped and the downward direction is to be taken as positive.

All falling bodies experience acceleration towards the center of the Earth due to the force of gravitational attraction exerted on the object by the Earth. A feather, when dropped experiences an acceleration in the downward direction. Since the acceleration of the feather is in the downward direction, a feather, when dropped with zero initial velocity, has its velocity vector directed in the direction of its acceleration.

If the downward direction is taken as positive, the falling feather can be said to have a positive velocity and a positive acceleration.

5 0
3 years ago
Evaluate tan45/tan45
SIZIF [17.4K]

I'm not sure I completely understand the expression you want evaluated.

It looks like a fraction with the same exact thing in both the numerator and the denominator. A fraction like that always boils down to ' 1 '.

5 0
3 years ago
Read 2 more answers
Other questions:
  • If your vehicle sinks in water, which window should you kick out when the pressure equalizes?
    9·1 answer
  • A certain sprinter has a top speed of 10.5 m/s. If the sprinter starts from rest and accelerates at a constant rate, he is able
    5·1 answer
  • Using energy considerations and assuming negligible air resistance, show that a rock thrown from a bridge 25.0 m above water wit
    8·1 answer
  • How do I solve using the formula:<br><br> Vf^2=vo^2+2gh<br><br> ^2 means square
    10·1 answer
  • The Earth belongs to the group of rocky planets that orbits between the sun and the asteroid belt. Place these planets in order,
    15·2 answers
  • Suppose you have two point charges of opposite sign. As you move them farther and farther apart, the potential energy of this sy
    7·2 answers
  • This is the smallest unit of matter that cannot be physiologically broken down.
    10·1 answer
  • Which of the following colors are part of the visible spectrum?
    6·2 answers
  • Please take 50 points please help me <br>please ​
    12·1 answer
  • Country and country produce the consumption goods and capital goods and currently have identical production curvesthey also have
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!