The vertical velocity of the projectile upon returning to its original is 17. 74 m/s
<h3>
How to determine the vertical velocity</h3>
Using the formula:
Vertical velocity component , Vy = V * sin(α)
Where
V = initial velocity = 36. 6 m/s
α = angle of projectile = 29°
Substitute into the formula
Vy = 36. 6 * sin ( 29°)
Vy = 36. 6 * 0. 4848
Vy = 17. 74 m/s
Thus, the vertical velocity of the projectile upon returning to its original is 17. 74 m/s
Learn more about vertical velocity here:
brainly.com/question/24949996
#SPJ1
Answer:
Energy lost due to friction is 22 J
Explanation:
Mass of the ball m = 4 kg
Initially velocity of ball v = 6 m/sec
So kinetic energy of the ball 

Now due to friction velocity decreases to 5 m/sec
Kinetic energy become

Therefore energy lost due to friction = 72 -50 = 22 J
I'm sure you've noticed that an airplane high in the sky, far away
from you, looks like it's moving very slowly. At the same time,
somebody passing you on a skateboard whizzes past you at
high speed. The farther away something is from you, the slower
it appears to move.
The nearest star outside the solar system is almost 32 thousand times
as far away from us as the farthest visible planet (Saturn) is, and all of the
other stars are farther than that.
That's why you have to wait a few thousand years before you notice
that the shape of a constellation has changed.
To put it a slightly different way . . . Everything is in motion. The motion is
more noticeable for nearby things, and less noticeable for farther-away things.
Objects within our solar system are the only ones near enough so that a human
lifetime is a long enough period in which to notice the change in their position.
Even Pluto moves less then 1.5° against the 'background' stars in a whole year.
This all makes me feel small. How about you ?
well in my own words, i'd saw the the doppler effect is similar to light because sound has a speed, and light does too.
so my theory is if you go fast enough everything would just become black, or maybe white? idk its hard to explain
but what my point is, is taht the doppler effect works in the same way, like if a car is moving towards you the sound is being emitted from the car and being pushed by the speed of the car making it have a much higher pitch, when the car is going away however it drops to a lower pitch due the the sound waves being DRAGGED by the car.
there hoped this helped I guess
The 61.0 kg object<span> ... F = (300kg)(6.673×10−11 </span>N m<span>^2 </span>kg<span>^−2)(61kg)/(.225m)^2. F = 2.412e-5 </span>N<span> towards the 495 </span>kg<span> block. </span>b. [195kg] ===.45m ... (b<span>) You cannot achieve this </span>position<span>. For the </span>net force<span> to become zero, one or both of the </span>masses<span> must ...</span>