1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Temka [501]
2 years ago
11

A cannon with a muzzle speed of 1 000 m/s is used to start an avalanche on a mountain slope. The target is 2 000 m from the cann

on horizontally and 800 m above the cannon. At what angle, above the horizontal, should the cannon be fired
Physics
1 answer:
Nataliya [291]2 years ago
4 0

Answer:

∅ = 89.44°

Explanation:

In situations like this air resistance are usually been neglected thereby making g= 9.81 m/s^{2}

Bring out the given parameters from the question:

Initial Velocity (V_{1}) = 1000 m/s

Target distance (d) = 2000 m

Target height (h) =  800 m

Projection angle ∅ = ?

Horizontal distance = V_{1x}tcos ∅     .......................... Equation 1

where V_{1x} = velocity in the X - direction

           t = Time taken

Vertical Distance = y = V_{1y} t - \frac{1}{2}gt^{2}        ................... Equation 2

Where   V_{1y} = Velocity in the Y- direction

              t  = Time taken

V_{1y} = V_{1}sin∅

Making time (t) subject of the formula in Equation 1

                    t = d/(V_{1x}cos ∅)

                      t = \frac{2000}{1000coso} = \frac{2}{cos0}  =    \frac{d}{cos o}             ...................Equation 3

substituting equation 3 into equation 2

Vertical Distance = d = V_{1y} \frac{d}{cos o} - \frac{1}{2}g\frac{2}{cos0}   ^{2}

                                  Vertical Distance = h = sin∅ \frac{d}{cos o} - \frac{1}{2}g\frac{2}{cos0}   ^{2}

  Vertical Distance = h = dtan∅   - \frac{1}{2}g\frac{2}{cos0}   ^{2}

  Applying geometry

                              \frac{1}{cos o} = tan^{2} o + 1

  Vertical Distance = h = d tan∅   - 2 g (tan^{2} o + 1)

               substituting the given parameters

               800 = 2000 tan ∅ - 2 (9.81)( tan^{2} o + 1)

              800 = 2000 tan ∅ - 19.6( tan^{2} o + 1)  Equation 4

Replacing tan ∅ = Q     .....................Equation 5

In order to get a quadratic equation that can be easily solve.

            800 = 2000 Q - 19.6Q^{2} + 19.6

Rearranging 19.6Q^{2} - 2000 Q + 780.4 = 0

                    Q_{1} = 101.6291

                      Q_{2} = 0.411

    Inserting the value of Q Into Equation 5

                 tan ∅ = 101.63    or tan ∅ = 0.4114

Taking the Tan inverse of each value of Q

                  ∅ = 89.44°     ∅ = 22.37°

             

You might be interested in
A falcon can descend with a speed 250 km/h. If a falcon flies at this speed for 2.0 s and then flies a 100 m in 2.5 s, what is t
Vadim26 [7]

Answer:

v= s/t

Explanation:

250 km/ h =69.44m/s

S1=2 times 69.44 ≈ 139m

Next 2.5 seconds:

S2 = 100m

Average speed:

v=139m+100m/2s+2.5s = 239/4.5s = 53.2 m/s=192km/h

3 0
2 years ago
A very long straight current-carrying wire produces a magnetic field of 25 µT at a distance d from the wire. How far will the ma
daser333 [38]

The magnetic field strength of a very long current-carrying wire is proportional to the inverse of the distance from the wire. The farther you go from the wire, the weaker the magnetic field becomes.

B ∝ 1/d

B = magnetic field strength, d = distance from wire

Calculate the scaling factor for d required to change B from 25μT to 2.8μT:

2.8μT/25μT = 1/k

k = 8.9

You must go to a distance of 8.9d to observe a magnetic field strength of 2.8μT

6 0
3 years ago
What is the effect of load resistor on ripple factor
Zolol [24]
<span>ripple factor can be reduced by increasing the value of the load resistor (which means reducing the load of the circuit)</span>
7 0
2 years ago
PLS ANSWER FAST WILL GIVE BRAINLY TIMED TEST
solong [7]
A=F/m
a=(3000000)/(20000)
a=15 m/s^2
4 0
2 years ago
All objects near the earths surface - regardless of size and weight - hhave the same force of gravityvacting on them.
masya89 [10]

Answer:

B. False

Explanation:

Not all objects near the earths surface - regardless of size and weight - have the same force of gravity on them.

4 0
3 years ago
Other questions:
  • Who first used the zodiac constellations? Will Mark Brainliest!!!
    7·1 answer
  • Aliens come blasting into our solar system and wipe out everything but the Sun, the Earth, and Jupiter. Discuss (conceptually) w
    10·1 answer
  • The north and south poles of a magnetic field produced by an electromagnet will switch when the direction of the BLANK changes.
    5·1 answer
  • Two particles are separated by 0.38 m and have charges of -6.25 x 10-°C
    13·2 answers
  • What is a Newton unit? kg-m/sec2 m/sec m/sec2 m2/sec
    13·1 answer
  • On a straight road with the +x axis chosen to point in the direction of motion, you drive for 5 hours at a constant 20 miles per
    7·1 answer
  • Which term describes a gap in the geologic record that occurs when sedimentary rocks cover an eroded surface?
    5·2 answers
  • A scientist heated a tank containing 50 g of water. The specific heat of water is 4.18 J/gºC. The temperature of the water incre
    9·1 answer
  • Hey guys who is on.......
    9·2 answers
  • A particle is moving at a speed less than c / 2 . If the speed of the particle is doubled, what happens to its momentum?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!