1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Temka [501]
2 years ago
11

A cannon with a muzzle speed of 1 000 m/s is used to start an avalanche on a mountain slope. The target is 2 000 m from the cann

on horizontally and 800 m above the cannon. At what angle, above the horizontal, should the cannon be fired
Physics
1 answer:
Nataliya [291]2 years ago
4 0

Answer:

∅ = 89.44°

Explanation:

In situations like this air resistance are usually been neglected thereby making g= 9.81 m/s^{2}

Bring out the given parameters from the question:

Initial Velocity (V_{1}) = 1000 m/s

Target distance (d) = 2000 m

Target height (h) =  800 m

Projection angle ∅ = ?

Horizontal distance = V_{1x}tcos ∅     .......................... Equation 1

where V_{1x} = velocity in the X - direction

           t = Time taken

Vertical Distance = y = V_{1y} t - \frac{1}{2}gt^{2}        ................... Equation 2

Where   V_{1y} = Velocity in the Y- direction

              t  = Time taken

V_{1y} = V_{1}sin∅

Making time (t) subject of the formula in Equation 1

                    t = d/(V_{1x}cos ∅)

                      t = \frac{2000}{1000coso} = \frac{2}{cos0}  =    \frac{d}{cos o}             ...................Equation 3

substituting equation 3 into equation 2

Vertical Distance = d = V_{1y} \frac{d}{cos o} - \frac{1}{2}g\frac{2}{cos0}   ^{2}

                                  Vertical Distance = h = sin∅ \frac{d}{cos o} - \frac{1}{2}g\frac{2}{cos0}   ^{2}

  Vertical Distance = h = dtan∅   - \frac{1}{2}g\frac{2}{cos0}   ^{2}

  Applying geometry

                              \frac{1}{cos o} = tan^{2} o + 1

  Vertical Distance = h = d tan∅   - 2 g (tan^{2} o + 1)

               substituting the given parameters

               800 = 2000 tan ∅ - 2 (9.81)( tan^{2} o + 1)

              800 = 2000 tan ∅ - 19.6( tan^{2} o + 1)  Equation 4

Replacing tan ∅ = Q     .....................Equation 5

In order to get a quadratic equation that can be easily solve.

            800 = 2000 Q - 19.6Q^{2} + 19.6

Rearranging 19.6Q^{2} - 2000 Q + 780.4 = 0

                    Q_{1} = 101.6291

                      Q_{2} = 0.411

    Inserting the value of Q Into Equation 5

                 tan ∅ = 101.63    or tan ∅ = 0.4114

Taking the Tan inverse of each value of Q

                  ∅ = 89.44°     ∅ = 22.37°

             

You might be interested in
Chance drives his scooter 7km north he stops for lunch and then drives 5km East to his friend house what distance did he cover
Katena32 [7]

Answer:12km

Explanation:

7km+5km=12km

6 0
3 years ago
A ladder 10 ft long rests against a vertical wall. If the bottom of the ladder slides away from the wall at a rate of 1.4 ft/s,
Art [367]

Answer:

\dfrac{d\theta}{dt} =-0.233\ rad/s

Explanation:

given,

length of ladder = 10 ft

let x be the distance of the bottom and y be the distance of the top of ladder.

x² + y² = 100

differentiating with respect to time we get

2 x\dfrac{dx}{dt}+2y\dfrac{dy}{dt} = 0..............(1)

when x = 8 and y = 6 and when \dfrac{dx}{dt} = 1.4ft/s

from equation (1)

now,

16\times 1.4 + 12\dfrac{dy}{dt} = 0

\dfrac{dy}{dt} = -\dfrac{5.6}{3}

let the angle between the ladders be θ

tan\theta = \dfrac{y}{x}

y = xtan θ

\dfrac{dy}{dt} =\dfrac{dy}{dt} tan\theta + x sec^2\theta\dfrac{d\theta}{dt}

-\dfrac{5.6}{3} =1.4\times \dfrac{6}{8} + 8 (1+\dfrac{9}{16})\dfrac{d\theta}{dt}

\dfrac{25}{2} \dfrac{d\theta}{dt} =\dfrac{-17.5}{6}

\dfrac{d\theta}{dt} =-0.233\ rad/s

6 0
3 years ago
A mass on a spring is first placed on a table and set in SHM and then held vertically and set in SHM. What variable/s would chan
alisha [4.7K]

The variable that changes is the period of the motion.

<h3>What is simple harmonic motion?</h3>

The term simple harmonic motion refers to a regular repeating motion. The acceleration of the SHM is always directed towards the center. The spring is an example of a system undergoing simple harmonic motion.

From the description in the question, the variable that changes is the period of the motion.

Learn more about simple harmonic motion: brainly.com/question/17315536

7 0
2 years ago
What happens to the direction of an object as an unbalanced force acts on<br> it? Give an example
Pie

Answer:

When an unbalanced force acts on a body the side with the greater force's dircetion makes the object move along its direction

Also to find the net force acting on the bofldy you can subtract the two force acting on the body

In case of balanced force the net force will always be 0

5 0
2 years ago
Read 2 more answers
Light rays from stars bend toward smaller angles as they enter Earth's atmosphere. a. Explain why this happens using Snell's law
Grace [21]

Answer:

Following are the answer to this question:

Explanation:

In option (a):

  • The principle of Snells informs us that as light travels from the less dense medium to a denser layer, like water to air or a thinner layer of the air to the thicker ones, it bent to usual — an abstract feature that would be on the surface of all objects. Mostly, on the contrary, glow shifts from a denser with a less dense medium. This angle between both the usual and the light conditions rays is referred to as the refractive angle.  
  • Throughout in scenario, the light from its stars in the upper orbit, the surface area of both the Earth tends to increase because as light flows from the outer atmosphere towards the Earth, it defined above, to a lesser angle.

In option (b):

  • Rays of light, that go directly down wouldn't bend, whilst also sun source which joins the upper orbit was reflected light from either a thicker distance and flex to the usual, following roughly the direction of the curve of the earth.  
  • Throughout the zenith specific position earlier in this thread, astronomical bodies appear throughout the right position while those close to a horizon seem to have been brightest than any of those close to the sky, and please find the attachment of the diagram.

8 0
3 years ago
Other questions:
  • When Edmund Halley visited Newton to ask him about orbits, what shape did Newton tell him orbits must have ?
    13·1 answer
  • Help solve these two problems im having trouble trying to start these problems?​
    8·1 answer
  • A student is bouncing on a trampoline. at her highest point, her feet are 65 cm above the trampoline. when she lands, the trampo
    14·1 answer
  • Acceleration is best defined as the rate of change of _______ of an object.
    9·1 answer
  • Which word equation is used to calculate the acceleration of an object? A. Subtract the initial velocity from the final velocity
    6·2 answers
  • Raindrops are falling straight down at 11 m/s when suddenly the wind starts blowing horizontally at a brisk 5.0 m/s. From your p
    6·1 answer
  • Can someone please help me on this!!!
    15·1 answer
  • Resistance in wires causes electrical energy to be converted to what form of energy? sound chemical energy nuclear energy therma
    8·1 answer
  • 10 A car has a mass of 1000 kg and a momentum of 12000 kgm/s.<br> What is its kinetic energy?
    14·1 answer
  • What is Sl system define brefly​
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!