Answer:- 2.92 kJ of heat is released.
Solution:- We have water at 100 degree C and it's going to be cool to 15 degree C.
So, change in temperature,
= 15 - 100 = -85 degree C
mass of water, m = 8.2 g
specific heat of water, c = 
The equation used for solving this type of problems is:

Let's plug in the values in the equation and solve it for q which is the heat energy:
q = (8.2)(4.184)(-85)
q = -2916.248 J
They want answer in kJ. So, let's convert J to kJ and for this we divide by 1000.

q = -2.92 kJ
Negative sign indicates the heat is released. So, in the above process of coiling of water, 2.92 kJ of heat is released.
Answer:
CO2
Explanation:
CO2 or carbon dioxide is produced when iron is extracted from its ore. Carbon monoxide Co is used as reducing agent in iron extraction. In this reaction iron ore is reduced to iron and CO is oxidized to CO2 or carbon dioxide which is released in the process. There extraction of iron is redox reaction.
Answer:
Production of liquid oxygen from air Oxygen is generated by liquefaction of atmospheric air in the air separation unit (ASU). Cryogenic technique is the most commonly used for producing liquid oxygen for industrial and medical applications .
Explanation:
Answer: A)There is a high ratio of energy to cost
Positives:
A Chunk of Uranium can power a city a lot longer than a chunk of coal.
It also does not contribute to pollution since what comes out of the tower is steam.
Negatives:
It is very expensive to build and maintain a nuclear power plant at first so investors whom want money up front are more reluctant to loan money for one.
If the plant does melt down it is very bad for the enviroment and its people, for example Chernobyl Nuclear Power Plant in the Ukraine will not be able to be lived in for approximently 20,000 years.
Answer:
This question is incomplete.
Explanation:
This question is incomplete because of the absence of given mass and volume, however, the steps below will help solve the completed question. The molarity (M) of a solution is the number of moles of solute per liter of solvent. The formula is illustrated below;
Molarity = number of moles (n) / volume (in liter or dm³)
To calculate the number of moles of NaC₂H₃O₂, we say
number of moles (n) =
given or measured mass of NaC₂H₃O₂ ÷ molar mass of NaC₂H₃O₂
The volume of the solvent must be in liter (same as dm³). Thus, to convert mL to liter, we divide by 1000
The unit for Molarity is M (Molar concentration), mol/L or mol/dm³