the answer to your question is A
KOH is a strong base and HBr is a strong acid and completely dissociates.
The balanced equation for the reaction is;
KOH + HBr ---> KBr + H₂O
Stoichiometry of acid to base is 1:1
The number of KOH moles reacted - 0.50 M / 1000 mL/L x 48.0 mL = 0.024 mol
number of HBr moles reacted - 0.25 M/ 1000 mL/L x 96.0 mL = 0.024 mol
the number of H⁺ ions are equal to number of OH⁻ ions.
Then the solution is neutral.
pH of neutral solutions at 25 °C is 7.
Therefore pH is 7
PH scale is from 1 to 14 and indicates how acidic or basic a solution is. To find pH or pOH we need to know the H⁺ ion concentration or OH⁻ concentration.
pH can be calculated using the following equation;
pH = -log[H⁺]
the H⁺ concentration of the given acid is 1.0 x 10⁻⁴ M. substituting this we can find the pH
pH = -log[1x10⁻⁴]
pH = 4
answer is 1) 4
<span>Boyles law states that the volume of a gas is proportional to the moles of the gas when pressure and temperature are kept constant. </span>
<h2>Answer:</h2>
He is right that the energy of vaporization of 47 g of water s 106222 j.
<h3>Explanation:</h3>
Enthalpy of vaporization or heat of vaporization is the amount of energy which is used to transform one mole of liquid into gas.
In case of water it is 40.65 KJ/mol. And 18 g of water is equal to one mole.
It means for vaporizing 18 g, 40.65 kJ energy is needed.
So for energy 47 g of water = 47/18 * 40.65 = 106.1 KJ
Hence the student is right about the energy of vaporization of 47 g of water.