Answer:
1.Stronger bones 2.Joint flexibility
To solve this problem it is necessary to apply the concepts related to the kinematic equations of angular motion.
By definition, acceleration can be expressed as the change in angular velocity squared over a given period of distance traveled.

where,
Angular velocity
Angular displacement.
In turn, as a function of time, we can represent it as,

For our case we have to,


PART A) In the case of angular acceleration we have to,



PART B) Through the definition of angular acceleration as a function of time we can calculate it,




Answer:
C.
Explanation:
This is what we call a permanent magnet. By the way, the magnetic phenomena were first observed about 2500 years ago near the ancient city of Magnesia, what is today Manisa, located in western Turkey, when people saw fragments of magnetized iron. So what happens if you cut a magnet in half? Well, a magnet has two ends, the first one is called a north pole or N pole while the other end is a south pole or S pole, so if you break a bar magnet, each piece has a north and south pole, no matter the size of each new bar although the smaller the piece, the weaker its magnetism. This is true because unlike electric charges, you always find magnetic poles in pairs, that is, ¡they can't be isolated! The option is C. because in the great bar the north pole is to the left while the south pole is to right.
Answer:
Depends on how long the string is, how heavy the weight, and how high you let go of it.
But it will most likely hit you :)
<em>the energy that is released in the chemical reactions is the exothermic energy ( stored ) in the bonds of reactants... :)</em>