Complete Question
In an action movie, the villain is rescued from the ocean by grabbing onto the ladder hanging from a helicopter. He is so intent on gripping the ladder that he lets go of his briefcase of counterfeit money when he is 130 m above the water. If the briefcase hits the water 6.0 s later, what was the speed at which the helicopter was ascending?
Answer:
The speed of the helicopter is 
Explanation:
From the question we are told that
The height at which he let go of the brief case is h = 130 m
The time taken before the the brief case hits the water is t = 6 s
Generally the initial speed of the briefcase (Which also the speed of the helicopter )before the man let go of it is mathematically evaluated using kinematic equation as
Here s is the distance covered by the bag at sea level which is zero
=>
=> 
=> 
1 foot = 30.48 cm
(x900) (x900)
900 feet = 27432 cm
Pls give me a brainliest if this helped thx
Answer:
Approximately
.
Explanation:
Since the result needs to be accurate to three significant figures, keep at least four significant figures in the calculations.
Look up the Rydberg constant for hydrogen:
.
Look up the speed of light in vacuum:
.
Look up Planck's constant:
.
Apply the Rydberg formula to find the wavelength
(in vacuum) of the photon in question:
.
The frequency of that photon would be:
.
Combine this expression with the Rydberg formula to find the frequency of this photon:
.
Apply the Einstein-Planck equation to find the energy of this photon:
.
(Rounded to three significant figures.)