Data:

n (Wave node)
V (Wave belly)
L (Wave length)
<span>The number of bells is equal to the number of the harmonic emitted by the string.
</span>

Wire 2 → 2º Harmonic → n = 2







Wire 1 → 1º Harmonic or Fundamental rope → n = 1



If, We have:
V = 42L
Soon:



Answer:
<span>The fundamental frequency of the string:
</span>
21 Hz
The answer is well log data, it is a detailed log of information taken from a borehole which geologist used to study geological formations of the earth's layer taken from samples returned from the borehole which was dugged.
Answer:
a) -2.038 m/s²
b) 40.33 mph
c) 312.5 m
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration

Acceleration of the boat is -2.083 m/s² if the boat will stop at 150 m.

Speed of the boat by when it will hit the dock is 18.03 m/s
Converting to mph



Speed of the boat by when it will hit the dock is 40.33 mph

The distance at which the boat will have to start decelerating is 312.5 m
Answer:
The speed of the boxes are 1 m/s.
Explanation:
Given that,
Mass of box = 1 kg
Mass of another box = 2 kg
Suppose 1 kg box moves with 3 m/s speed.
We need to calculate the speed of the boxes
Using formula of conservation of momentum

Where, u = initial velocity
v = final velocity
Put the value into the formula



Hence, The speed of the boxes are 1 m/s.
Answer =7,142.9W
I hope this helps (: