In BPC
tan\theta =a/b = 3/4
\theta = tan^-1(0.75)
\theta = 36.87 deg
BP = sqrt(a^2 + b^2) = sqrt((3)^2 + (4)^2) = 5 m
Eb = k Q/BP^2 = (9 x 10^9) (16 x 10^-9)/5^2 = 5.76 N/C
Ea = k Q/AP^2 = (9 x 10^9) (16 x 10^-9)/4^2 = 9 N/C
Ec = k Q/CP^2 = (9 x 10^9) (16 x 10^-9)/3^2 = 16 N/C
Net electric field along X-direction is given as
Ex = Ea + Eb Cos36.87 = (9) + (5.76) Cos36.87 = 13.6 N/C
Net electric field along X-direction is given as
Ey = Ec + Eb Sin36.87 = (16) + (5.76) Sin36.87 = 19.5 N/C
Net electric field is given as
E = sqrt(Ex^2 + Ey^2) = sqrt((13.6)^2 + (19.5)^2) = 23.8 N/C
Answer:
the statements the correct one is A
Explanation:
Let's analyze this exercise, vehicles have the same mass and speed, so we can use the momentum impulse ratio
I = ∫ F dt = Δp
the Δp is the same for both cars since they have the same mass and the same speeds, so the momentum is the same in both vehicles
When they indicate that vehicle A was reduced more than vehicle B, this implies that the force acted for a longer time, to have the largest reduction in size, therefore the impact force was less in car A than in car B
Resisting the statements the correct one is A
Towards
<u>Explanation:</u>
When light is incident at a transparent surface, the transmitted component of the light changes direction at the interface. Another component of the light is reflected at the surface. When a ray of light passes from water to diamond at an angle 45°, its path is bent towards the normal. This is so because water is less dense than the diamond. The refractive index of water (n = 1.33) is less than the refractive index of diamond (n = 2.419).
luxury goods might not be bought
The direction of the force experienced by the positive charge is upward.
We can use the right-hand rule to understand the direction of the Lorentz force acting on the charge: let's put the thumb in the same direction of the current in the wire (eastward), while the other fingers "wrap themselves" around the wire. These other fingers give the direction of the Lorentz force in every point of the space around the wire. Since the charge is located north of the wire, in that point the fingers are directed upward, so the positive charge experiences a force directed upward.
(if it was a negative charge, we should have taken the opposite direction)