1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
WARRIOR [948]
3 years ago
9

Find the potential energy of a 2kg ball 15m in the air

Physics
1 answer:
Paraphin [41]3 years ago
8 0
<span>The ball's gravitational potential energy at its peak height was 0.4 joules, and its .... Ignore air resistance and determine (a) the kinetic energy at 28.1 m, (b) the .... At position B, just before it lands, it is falling at 15m/s. a) if the blocks potential ...</span>
You might be interested in
A garbage truck has a mass of 2100 kg. It starts from rest and travels 75 meters in 15 seconds. The truck uniformly accelerates
Ivanshal [37]

Answer: F=(2100)(0.33)=693N

Explanation:

3 0
3 years ago
What is the frequency of a photon with an energy of 4. 56 x 10^-19 j
Sauron [17]

The frequency of a photon with an energy of 4.56 x 10⁻¹⁹ J is 6.88×10¹⁴ s⁻¹.

<h3>What is a frequency?</h3>

The number of waves that travel through a particular point in a given length of time is described by frequency. So, if a wave takes half a second to pass, the frequency is 2 per second.

Given that the energy of the photon is 4.56 x 10⁻¹⁹ J. Therefore, the frequency of the photon can be written as,

\rm \gamma = \dfrac{E}{h} = \dfrac{4.56x10^{-19} J}{6.626 \times 10^{-34}\ Jsec^{-1}}\\\\\\\gamma  = 6.88 \times 10^{14}\ s^{-1}

Hence, the frequency of a photon with an energy of 4.56 x 10⁻¹⁹ J is 6.88×10¹⁴ s⁻¹.

Learn more about Frequency:

brainly.com/question/5102661

#SPJ4

5 0
2 years ago
Read 2 more answers
NASA has asked your team of rocket scientists about the feasibility of a new satellite launcher that will save rocket fuel. NASA
kkurt [141]

Answer:

The answer is "q=0.0945\,C".

Explanation:

Its minimum velocity energy is provided whenever the satellite(charge 4 q) becomes 15 m far below the square center generated by the electrode (charge q).

U_i=\frac{1}{4\pi\epsilon_0} \times \frac{4\times4q^2}{\sqrt{(15)^2+(5/\sqrt2)^2}}

It's ultimate energy capacity whenever the satellite is now in the middle of the electric squares:

U_f=\frac{1}{4\pi\epsilon_0}\ \times \frac{4\times4q^2}{( \frac{5}{\sqrt{2}})}

Potential energy shifts:

= U_f -U_i \\\\ =\frac{16q^2}{4\pi\epsilon_0}\left ( \frac{\sqrt2}{5}-\frac{1}{\sqrt{(15)^2+( \frac{5}{\sqrt{2})^2)}}\right ) \\\\   =\frac{16q^2}{4\pi\epsilon_0}\left ( \frac{\sqrt2}{5}-\frac{1}{ 15 +( \frac{5}{2})}}\right )\\\\ =\frac{16q^2}{4\pi\epsilon_0}\left ( \frac{\sqrt2}{5}-\frac{1}{ (\frac{30+5}{2})}}\right )\\\\

=\frac{16q^2}{4\pi\epsilon_0}\left ( \frac{\sqrt2}{5}-\frac{1}{ (\frac{35}{2})}}\right )\\\\=\frac{16q^2}{4\pi\epsilon_0}\left ( \frac{\sqrt2}{5}-\frac{1}{17.5}}\right )\\\\ =\frac{16q^2}{4\pi\epsilon_0}\left ( \frac{ 24.74- 5 }{87.5}}\right )\\\\ =\frac{16q^2}{4\pi\epsilon_0}\left ( \frac{ 19.74- 5 }{87.5}}\right )\\\\ =\frac{4q^2}{\pi\epsilon_0}\left ( 0.2256 }\right )\\\\= \frac{0.28 \times q^2}{ \epsilon_0}\\\\=q^2\times31.35 \times10^9\,J

Now that's the energy necessary to lift a satellite of 100 kg to 300 km across the surface of the earth.

=\frac{GMm}{R}-\frac{GMm}{R+h} \\\\=(6.67\times10^{-11}\times6.0\times10^{24}\times100)\left(\frac{1}{6400\times1000}-\frac{1}{6700\times1000} \right ) \\\\ =(6.67\times10^{-11}\times6.0\times10^{26})\left(\frac{1}{64\times10^{5}}-\frac{1}{67\times10^{5}} \right ) \\\\=(6.67\times6.0\times10^{15})\left(\frac{67 \times 10^{5} - 64 \times 10^{5}  }{ 4,228 \times10^{5}} \right ) \\\\

=( 40.02\times10^{15})\left(\frac{3 \times 10^{5}}{ 4,228 \times10^{5}} \right ) \\\\ =40.02 \times10^{15} \times 0.0007 \\\\

\\\\ =0.02799\times10^{10}\,J \\\\= q^2\times31.35\times10^{9} \\\\ =0.02799\times10^{10} \\\\q=0.0945\,C

This satellite is transmitted by it system at a height of 300 km and not in orbit, any other mechanism is required to bring the satellite into space.

6 0
3 years ago
What is the density of the block if it has a mass of 45.5 grams and a volume of 2.4 cm³?
rjkz [21]

Explanation:

density= mass/volume

therefore;45.5/2.4

=19.0 g/cm³

5 0
2 years ago
A ball starts at rest and rolls down an inclined plane. The ball reaches 7.5 m/s in 3 seconds. What is the acceleration?
just olya [345]

Answer:

a=2.5\ m/s^2

Explanation:

<u>Motion With Constant Acceleration </u>

It's a type of motion in which the velocity of an object changes uniformly over time.

The equation that describes the change of velocities is:

v_f=v_o+at

Where:

a   = acceleration

vo = initial speed

vf  = final speed

t    = time

Solving the equation for a:

\displaystyle a=\frac{v_f-v_o}{t}

The ball starts at rest (vo=0) and rolls down an inclined plane that makes it reach a speed of vf=7.5 m/s in t=3 seconds.

The acceleration is:

\displaystyle a=\frac{7.5-0}{3}

\boxed{a=2.5\ m/s^2}

7 0
2 years ago
Other questions:
  • Desceibe how the ringing sound of a telephone
    14·1 answer
  • What acceleration will a force of 20 newton's cause it applied to a go kart with a mass of 20 kilograma
    10·1 answer
  • What energy does a galloping horse and a speeding bullet represent
    12·2 answers
  • What is the energy conversion in a hair dryer?
    5·1 answer
  • Two balloons are charged with an identical quantity and type of charge: -4 nc They are held apart at a separation distance of 70
    8·1 answer
  • I dont know why people find 21 and 17 38 funny plz explain
    15·2 answers
  • In 3.0 seconds, a wave generator produces 15 pulses that spread over a distance of 45 centimeters. Calculate the wave's frequenc
    8·1 answer
  • The results from Rutherford's alpha particle scattering experiment led to
    9·1 answer
  • ANSWER THIS FOR BRAINY CROWN B) ITS SO EASY!
    5·2 answers
  • A simple pendulum with a length of 2 m oscillates on the Earth's surface. What is the period of oscillations?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!