If there is no existence of capacitors in our world there would be no electrical or electronic engineering.
A capacitor is a device that stores electrical energy in an electric field. It has two terminals and is a passive electrical component. Capacitance refers to a capacitor's effect. A capacitor commonly referred to as a condenser is one of the fundamental parts needed to create electronic circuits. Without fundamental parts like resistors, inductors, diodes, transistors, etc., a circuit's design is incomplete or it won't work properly.
Energy storage is capacitors' most popular application. Power conditioning, signal coupling or decoupling, electronic noise filtering, and remote sensing are further applications. Capacitors are employed in a wide variety of industries and have integrated into daily life due to their numerous applications.
There are numerous significant uses for capacitors. They are employed in digital circuits, for instance, to prevent the loss of data saved in big computer memories during a brief loss of power. The electric energy held in such capacitors keeps the data from being lost during a brief power outage.
To know more about capacitors refer to: brainly.com/question/14126841
#SPJ9
A. By ensuring they follow the scientific method
Answer:
i. + 22.5 m ii. 4.0 m
Explanation:
i. Image distance
Using the lens formula
1/u + 1/v = 1/f where f = focal length = + 18.0 m, u = object distance = distance of shark away from lens = + 90.0 m and v = image distance from lens = unknown
So, we find v
1/v = 1/f - 1/u
= 1/+18 - 1/+90
= (5 - 1)/90
= 4/90
v = 90/4
= + 22.5 m
So the image is real and formed 22.5 m away on the other side of the lens.
ii Length of Shark
Using the magnification formula, m = image height/object height = image distance/object distance. image height = 1.0 m where object height = length of shark.
m = image distance/object distance
= v/u
= +22.5/+90
= 0.25
0.25 = image height/object height
So,
object height = image height/0.25
= 1.0 m/0.25
= 4.0 m
So, the length of the shark is 4.0 m
This problem here is an example of inelastic collision where kinetic energy is not conserved but momentum is. We calculate as follows:
m1v1 + m2v2 = (m1 + m2)v3
v3 = m1v1 + m2v2 / m1 + m2
v3 = (30.2)(1000) + (5000)(0) / (30.2 + 5000)
v3 = 6.00 m/s