Explanation:
It is given that,
Mass of a bungee jumper is 65 kg
The time period of the oscillation is 38 s, hitting a low point eight more times.It means its time period is

After many oscillations, he finally comes to rest 25.0 m below the level of the bridge.
For an oscillating object, the time period is given by :

k = spring stiffness constant
So,

When the cord is in air,
mg=kx
x = the extension in the cord

So, the unstretched length of the bungee cord is equal to 25 m - 5.6 m = 19.4 m
Answer:
The answer is D.
Explanation:
Average speed involve just distance and time but average velocity includes displacement and time.
(Correct me if I am wrong)
Answer:
![\vec{E} = \frac{\lambda}{2\pi\epsilon_0}[\frac{1}{y}(\^y) - \frac{1}{x}(\^x)]](https://tex.z-dn.net/?f=%5Cvec%7BE%7D%20%3D%20%5Cfrac%7B%5Clambda%7D%7B2%5Cpi%5Cepsilon_0%7D%5B%5Cfrac%7B1%7D%7By%7D%28%5C%5Ey%29%20-%20%5Cfrac%7B1%7D%7Bx%7D%28%5C%5Ex%29%5D)
Explanation:
The electric field created by an infinitely long wire can be found by Gauss' Law.

For the electric field at point (x,y), the superposition of electric fields created by both lines should be calculated. The distance 'r' for the first wire is equal to 'y', and equal to 'x' for the second wire.
![\vec{E} = \vec{E}_1 + \vec{E}_2 = \frac{\lambda}{2\pi\epsilon_0 y}(\^y) + \frac{-\lambda}{2\pi\epsilon_0 x}(\^x)\\\vec{E} = \frac{\lambda}{2\pi\epsilon_0 y}(\^y) - \frac{\lambda}{2\pi\epsilon_0 x}(\^x)\\\vec{E} = \frac{\lambda}{2\pi\epsilon_0}[\frac{1}{y}(\^y) - \frac{1}{x}(\^x)]](https://tex.z-dn.net/?f=%5Cvec%7BE%7D%20%3D%20%5Cvec%7BE%7D_1%20%2B%20%5Cvec%7BE%7D_2%20%3D%20%5Cfrac%7B%5Clambda%7D%7B2%5Cpi%5Cepsilon_0%20y%7D%28%5C%5Ey%29%20%2B%20%5Cfrac%7B-%5Clambda%7D%7B2%5Cpi%5Cepsilon_0%20x%7D%28%5C%5Ex%29%5C%5C%5Cvec%7BE%7D%20%3D%20%5Cfrac%7B%5Clambda%7D%7B2%5Cpi%5Cepsilon_0%20y%7D%28%5C%5Ey%29%20-%20%5Cfrac%7B%5Clambda%7D%7B2%5Cpi%5Cepsilon_0%20x%7D%28%5C%5Ex%29%5C%5C%5Cvec%7BE%7D%20%3D%20%5Cfrac%7B%5Clambda%7D%7B2%5Cpi%5Cepsilon_0%7D%5B%5Cfrac%7B1%7D%7By%7D%28%5C%5Ey%29%20-%20%5Cfrac%7B1%7D%7Bx%7D%28%5C%5Ex%29%5D)
<em>Answer:</em>
<em>When </em><em>a </em><em>body </em><em>is </em><em>moving </em><em>on </em><em>a </em><em>circle </em><em>it </em><em>is </em><em>accelerating </em><em>because </em><em>centripetal </em><em>acceleration</em><em> </em><em>is </em><em>always </em><em>acting </em><em>on </em><em>it </em><em>towards </em><em>the </em><em>center.</em>
<em>Please </em><em>see</em><em> the</em><em> attached</em><em> picture</em><em>.</em><em>.</em><em>.</em>
<em>From </em><em>the </em><em>above </em><em>diagram,</em><em>we </em><em>can </em><em>say </em><em>the </em><em>acceleration</em><em> </em><em>is </em><em>always </em><em>acting </em><em>on </em><em>the </em><em>body </em><em>when </em><em>it </em><em>moves </em><em>in </em><em>a </em><em>circle.</em>
<em>Hope </em><em>this </em><em>helps.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em>
<em>Good </em><em>luck</em><em> on</em><em> your</em><em> assignment</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em>