20 cups of flour, 30 eggs, and 10 cups of sugar
Answer:
Explanation:
d because its already a liquid as well as the acid
Answer:
101.56 of H₂O
Explanation:
The balanced equation for the reaction is given below:
CH₄ + 2O₂ —> CO₂ + 2H₂O
Next, we shall determine the mass of CH₄ that reacted and the mass of H₂O produced from the balanced equation. This is illustrated below:
Molar mass of CH₄ = 12 + (4×1.01)
= 12 + 4.04
= 16.04 g/mol
Mass of CH₄ from the balanced equation = 1 × 16.04 = 16.04 g
Molar mass of H₂O = (2×1.01) + 16
= 2.02 + 16
= 18.02 g/mol
Mass of H₂O from the balanced equation = 2 × 18.02 = 36.04g
SUMMARY:
From the balanced equation above,
16.04 g of CH₄ reacted to produce 36.04 g of H₂O.
Finally, we shall determine the mass of water, H₂O produced by the reaction of 45.2 g of methane, CH₄. This can be obtained as illustrated below:
From the balanced equation above,
16.04 g of CH₄ reacted to produce 36.04 g of H₂O.
Therefore 45.2 g of CH₄ will react to produce = (45.2 × 36.04)/16.04 = 101.56 g of H₂O.
Thus, 101.56 of H₂O were obtained.
Answer:
[N2] = [O2] = 0.841M
And [NO] = 0.00172M
Explanation:
The equilibrium constant of this reaction, Kc, is:
Kc = 2400 = [N2] [O2] / [NO]²
<em>Where [] are the equilibrium concentration of each specie.</em>
<em />
The initial concentration of [N2] = [O2] = 0.850M. The equilibrium will shift to the left in order to produce NO. The equilibrium concentrations are:
[N2] = [O2] = 0.850M - X
And [NO] = 2X
Replacing:
2400 = [0.850-X]² / [2X]²
9600X² = 0.7225 - 1.7 X + X²
0 = 0.7225 - 1.7 X - 9599X²
Solving for X:
X = -0.0088M. False solution, there is no negative concentrations.
X = 0.00859M. Right solution.
Replacing:
[N2] = [O2] = 0.850M - 0.00859M
And [NO] = 2*0.00859M
[N2] = [O2] = 0.841M
And [NO] = 0.00172M