Answer:
The mixture is not in equilibrium, the reaction will shift to the left.
Explanation:
<em>Based on the equilibrium:</em>
<em>Fe³⁺+ HSCN ⇄ FeSCN²⁺ + H⁺</em>
<em>kc = 30 = [FeSCN²⁺] [H⁺] / [Fe³⁺] [HSCN]</em>
Where [] are concentrations at equilibrium. The reaction is in equilibrium when the ratio of concentrations = kc
Q is the same expression than kc but with [] that are not in equilibrium
Replacing:
Q = [10.0M] [1.0M] / [0.1M] [0.1M]
Q = 1000
As Q > kc, the reaction will shift to the left in order to produce Fe³⁺ and HSCN untill Q = Kc
<em>
</em>
<em>
</em>
<em />
Answer:
0.719M AgNO₃
Explanation:
Based on the reaction:
MgBr₂ + 2AgNO₃ ⇄ 2AgBr + Mg(NO₃)₂
<em>1 mole of magnesium bromide reacts completely with 2 moles of AgNO₃</em>
<em />
To find molarity of AgNO₃ solution we need to determine moles of AgNO₃ and, as molarity is the ratio of moles over liter (13.9mL = 0.0139L). Now, to determine moles of AgNO₃ we need to use the reaction, thus:
<em>Moles AgNO₃:</em>
<em />
Moles of MgBr₂ are:
50.0mL = 0.050L * (0.100mol / L) = 0.00500 moles of MgBr₂.
As the silver nitrate reacts completely and 2 moles of AgNO₃ reacts per mole of MgBr₂:
0.00500 moles MgBr₂ * (2 moles AgNO₃ / 1 mole MgBr₂) =
0.0100 moles of AgNO₃ are in the solution.
And molarity is:
0.0100 moles AgNO₃ / 0.0139L =
<h3>0.719M AgNO₃</h3>
Answer:
The answer to your question is letter A.
Explanation:
Isomers are molecules that have the same molecular formula but have a different structure. The molecule from which are looking an isomer has 5 carbons and 1 double bond. Then we need to look for another molecule with these components.
A.- This molecule has 5 carbons and 1 double bond, This structure is an isomer of the first one.
B.- This molecule has 3 carbons and 1 double bond, it's not an isomer of the first structure.
C. This molecule has 4 carbons and 1 triple bonds, it's not an isomer of the first structure.
D. This molecule has 5 carbons but it doesn't have any double bond, then it's not an isomer of the first structure.
It shows mass is not created nor lost but re arranged