Answer:
3
Step-by-step explanation:
If 6 numbers have a mean value of 10, it means that the sum of the numbers divided 6 is equal to 10. This can be expressed as:
x÷6=10
x=60
The new number added will be the 7th number and now the mean is 9. You have to ask what number divided by 7 is equal to 9? This can be expressed as:
y÷7=9
y=63
63-60=3
So the new number added is 3
Laura paddles in her canoe at a speed of 5 mph for 5 miles.
As we know that

Substitute the values we get

Laura hops on her windsurfer and sails for 12 miles at a speed of 6 mph.
Again using the above formula we can write

Hence from equation (i) and (ii), we can say total time of travel
Answer:
Domain: 1 ≤ x ≤ 4
Range : 1 ≤ f(x) ≤ 4
Step-by-step explanation:
The domain of a function f(x) is the limit within which the values of x varies.
Here, in the graph, it shows that the maximum value of x is 4 and the minimum value of x is 1.
Therefore, the domain of the function is 1 ≤ x ≤ 4
Again the range of a function f(x) is the limit within which the values of f(x) vary.
Here, the graph shows that the maximum value of f(x) is 4 and the minimum value of f(x) is 1.
Therefore, the range of the function f(x) is 1 ≤ f(x) ≤ 4. (Answer)
Benjamin is correct about the diameter being perpendicular to each other and the points connected around the circle.
<h3>
Inscribing a square</h3>
The steps involved in inscribing a square in a circle include;
- A diameter of the circle is drawn.
- A perpendicular bisector of the diameter is drawn using the method described as the perpendicular of the line sector. Also known as the diameter of the circle.
- The resulting four points on the circle are the vertices of the inscribed square.
Alicia deductions were;
Draws two diameters and connects the points where the diameters intersect the circle, in order, around the circle
Benjamin's deductions;
The diameters must be perpendicular to each other. Then connect the points, in order, around the circle
Caleb's deduction;
No need to draw the second diameter. A triangle when inscribed in a semicircle is a right triangle, forms semicircles, one in each semicircle. Together the two triangles will make a square.
It can be concluded from their different postulations that Benjamin is correct because the diameter must be perpendicular to each other and the points connected around the circle to form a square.
Thus, Benjamin is correct about the diameter being perpendicular to each other and the points connected around the circle.
Learn more about an inscribed square here:
brainly.com/question/2458205
#SPJ1