Answer:
α = 0.0135 rad/s²
Explanation:
given,
t = 133 min = 133 x 60 = 7980 s
angular speed varies from 570 rpm to 1600 rpm
now,
570 rpm = 
= 59.69 rad/s
1600 rpm = = 
= 167.6 rad/s
using equation of rotational motion
ωf = ωi + αt
167.6 = 59.7 + α x 7980
α x 7980 = 107.9
α = 0.0135 rad/s²
Answer:
FALSE!!!
Explanation:
Business letters are formal and normally given to someone of higher importance.
Using the precise speed of light in a vacuum (

), and your given distance of

, we can convert and cancel units to find the answer. The distance in m, using

, is

. Next, for the speed of light, we convert from s to min, using

, so we divide the speed of light by 60. Finally, dividing the distance between the Sun and Venus by the speed of light in km per min, we find that it is
6.405 min.
Range of a projectile motion is given by
R = v cos θ / g (v sin θ + sqrt(v^2 sin^2 θ + 2gy_0)); where R = 188m, θ = 41°, g = 9.8m/s^2, y_0 = 0.9
188 = v cos 41° / 9.8 (v sin 41° + sqrt(v^2 sin^2 41° + 2 x 9.8 x 0.9)) = 0.07701(0.6561v + sqrt(0.4304 v^2 + 17.64)) = 0.05053v + 0.07701sqrt(0.4304v^2 + 17.64)
0.07701sqrt(0.4304v^2 + 17.64) = 188 - 0.05053v
0.005931(0.4304v^2 + 17.64) = 35344 - 19v + 0.002553v^2
0.002553v^2 + 0.1046 = 35344 - 19v + 0.002553v^2
19v = 35344 - 0.1046 = 35343.8954
v = 35343.8954/19 = 1860 m/s