Explanation:
Atomic number , protons and electrons have the same value / their value is same .
But for the neutron there is no specific technique. You have to remember the neutrons of every element
Closed system. If the system is not closed, matter or energy can escape from the system. an example of this is if you react magnesium and hydrochloric acid in a open system. The H₂ gas is going to escape making it look like some of the mass disappeared . in that same reaction some in an open system will also loose heat to the surrounding which will make it look like less heat was produced.
The molar extinction coefficient is 15,200
.
The formula to be used to calculate molar extinction coefficient is -
A = ξcl, where A represents absorption, ξ refers molar extinction coefficient, c refers to concentration and l represents length.
The given values are in required units, hence, there is no need to convert them. Directly keeping the values in formula to find the value of molar extinction coefficient.
Rewriting the formula as per molar extinction coefficient -
ξ = 
ξ = 
Performing multiplication in denominator to find the value of molar extinction coefficient
ξ =
Performing division to find the value of molar extinction coefficient
ξ = 15,200 
Hence, the molar extinction coefficient is 15,200
.
Learn more about molar extinction coefficient -
brainly.com/question/14744039
#SPJ4
Answer:
the energy required to do work
To determine the number of moles of carbon dioxide that is produced, we need to know the reaction of the process. For the reaction of HCl and sodium carbonate, the balanced chemical equation would be expressed as:
2HCl + Na2CO3 = 2NaCl + H2O + CO2
From the initial amount given of sodium carbonate and the relation of the substances from the balanced reaction, we calculate the moles of carbon dioxide as follows:
0.2 moles Na2Co3 ( 1 mol CO2 / 1 mol Na2Co3 ) = 0.2 moles CO2
Therefore, the amount in moles of carbon dioxide that is produced from 0.2 moles sodium carbonate would be 0.2 moles as well.