Answer : 4.8 florins can you exchange for your 4 guilders.
Solution : Given,
The current exchange rate for every 2.4 florins is 2.0 guilders
As per question,
The exchange rate is 2.0 guilders for every 2.4 florins
The exchange rate is 1 guilders for every
florins
The exchange rate is 4 guilders for every
florins
Therefore, the 4.8 florins can you exchange for your 4 guilders.
id say its C mechanical energy making the wheels turn.
690 Kelvin is the boiling point of this compound.
Explanation:
Enthalpy is the sum of internal energy and the product of pressure and volume that is how much energy is in the substance.
Entropy is the measurement of randomness and measure of thermal energy per unit of temperature.
ΔH vap of compound is 46.55 kJ⋅ mol− or J.MOL-1
ΔS vap is 67.37 J⋅mol−1⋅K−1.
The boiling point or temperature can be calculated by the formula:
T= 
T =
= 690 Kelvin
The boiling point is the temperature when atmospheric temperature gets equal to
<u>Answer:</u> The value of
for the reaction is 1051.93 J/K
<u>Explanation:</u>
Entropy change is defined as the difference in entropy of all the product and the reactants each multiplied with their respective number of moles.
The equation used to calculate entropy change is of a reaction is:
![\Delta S^o_{rxn}=\sum [n\times \Delta S^o_{(product)}]-\sum [n\times \Delta S^o_{(reactant)}]](https://tex.z-dn.net/?f=%5CDelta%20S%5Eo_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20S%5Eo_%7B%28product%29%7D%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20S%5Eo_%7B%28reactant%29%7D%5D)
For the given chemical reaction:

The equation for the entropy change of the above reaction is:
![\Delta S^o_{rxn}=[(2\times \Delta S^o_{(Cr_2O_3(s))})]-[(4\times \Delta S^o_{(Cr(s))})+(3\times \Delta S^o_{(O_2(g))})]](https://tex.z-dn.net/?f=%5CDelta%20S%5Eo_%7Brxn%7D%3D%5B%282%5Ctimes%20%5CDelta%20S%5Eo_%7B%28Cr_2O_3%28s%29%29%7D%29%5D-%5B%284%5Ctimes%20%5CDelta%20S%5Eo_%7B%28Cr%28s%29%29%7D%29%2B%283%5Ctimes%20%5CDelta%20S%5Eo_%7B%28O_2%28g%29%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![\Delta S^o_{rxn}=[(2\times (881.2))]-[(4\times (23.77))+(3\times (205.13))]\\\\\Delta S^o_{rxn}=1051.93J/K](https://tex.z-dn.net/?f=%5CDelta%20S%5Eo_%7Brxn%7D%3D%5B%282%5Ctimes%20%28881.2%29%29%5D-%5B%284%5Ctimes%20%2823.77%29%29%2B%283%5Ctimes%20%28205.13%29%29%5D%5C%5C%5C%5C%5CDelta%20S%5Eo_%7Brxn%7D%3D1051.93J%2FK)
Hence, the value of
for the reaction is 1051.93 J/K