Answer:
Explanation:
Work is defined as the scalar product of force and distance
W=F•d
Given that
F = 8.5i + -8.5j. +×-=-
F=8.5i-8.5j
d = 2.5i + cj
If the work in the practice is zero, then W=0
therefore,
W=F•ds
0=F•ds
0=(8.5i -8.5j)•(2.5i + cj)
Note that
i.i=j.j=k.k=1
i.j=j.i=k.i=i.k=j.k=k.j=0
So applying this
0=(8.5i -8.5j)•(2.5i + cj)
0= (8.5×2.5i.i + 8.5×ci.j -8.5×2.5j.i-8.5×cj.j)
0=21.25-8.5c
Therefore,
8.5c=21.25
c=21.25/8.5
c=2.5
It is 2.) Cut the DNA into fragments
Answer:
4.535 N.m
Explanation:
To solve this question, we're going to use the formula for moment of inertia
I = mL²/12
Where
I = moment of inertia
m = mass of the ladder, 7.98 kg
L = length of the ladder, 4.15 m
On solving we have
I = 7.98 * (4.15)² / 12
I = (7.98 * 17.2225) / 12
I = 137.44 / 12
I = 11.45 kg·m²
That is the moment of inertia about the center.
Using this moment of inertia, we multiply it by the angular acceleration to get the needed torque. So that
τ = 11.453 kg·m² * 0.395 rad/s²
τ = 4.535 N·m
(a) The moment of inertia of the wheel is 78.2 kgm².
(b) The mass (in kg) of the wheel is 1,436.2 kg.
(c) The angular speed (in rad/s) of the wheel at the end of this time period is 3.376 rad/s.
<h3>
Moment of inertia of the wheel</h3>
Apply principle of conservation of angular momentum;
Fr = Iα
where;
- F is applied force
- r is radius of the cylinder
- α is angular acceleration
- I is moment of inertia
I = Fr/α
I = (200 x 0.33) / (0.844)
I = 78.2 kgm²
<h3>Mass of the wheel</h3>
I = ¹/₂MR²
where;
- M is mass of the solid cylinder
- R is radius of the solid cylinder
- I is moment of inertia of the solid cylinder
2I = MR²
M = 2I/R²
M = (2 x 78.2) / (0.33²)
M = 1,436.2 kg
<h3>Angular speed of the wheel after 4 seconds</h3>
ω = αt
ω = 0.844 x 4
ω = 3.376 rad/s
Thus, the moment of inertia of the wheel is 78.2 kgm².
The mass (in kg) of the wheel is 1,436.2 kg.
The angular speed (in rad/s) of the wheel at the end of this time period is 3.376 rad/s.
Learn more about moment of inertia here: brainly.com/question/14839816
#SPJ1
Answer:
true
Explanation:
this is the answer to this question