-- We're going to be talking about the satellite's speed.
"Velocity" would include its direction at any instant, and
in a circular orbit, that's constantly changing.
-- The mass of the satellite makes no difference.
Since the planet's radius is 3.95 x 10⁵m and the satellite is
orbiting 4.2 x 10⁶m above the surface, the radius of the
orbital path itself is
(3.95 x 10⁵m) + (4.2 x 10⁶m)
= (3.95 x 10⁵m) + (42 x 10⁵m)
= 45.95 x 10⁵ m
The circumference of the orbit is (2 π R) = 91.9 π x 10⁵ m.
The bird completes a revolution every 2.0 hours,
so its speed in orbit is
(91.9 π x 10⁵ m) / 2 hr
= 45.95 π x 10⁵ m/hr x (1 hr / 3,600 sec)
= 0.04 x 10⁵ m/sec
= 4 x 10³ m/sec
(4 kilometers per second)
A pendulum is an object hung from a fixed point that swings back and forth under the action of gravity. In the example of the playground swing, the swing is supported by chains that are attached to fixed points at the top of the swing set. When the swing is raised and released, it will move freely back and forth due to the force of gravity on it. The swing continues moving back and forth without any extra outside help until friction (between the air and the swing and between the chains and the attachment points) slows it down and eventually stops it.
A little confused by the wording of the problem, but it is true that an object can have a negative acceleration and be speeding up in the negative direction… so I’d go with True
Ultrasound is an imaging test that uses sound waves to create a picture