Answer:
The coefficient of friction causes the force on the object to be less than its initial reading on the spring scale.
Explanation:
Since the block reads 24.5 N before the block starts to move, this is its weight. Now, when the block starts to move at a constant velocity, it experiences a frictional force which is equal to the force with which the student pulls.
Now, since the velocity is constant so, there is no acceleration and thus, the net force is zero.
Let F = force applied and f = frictional force = μN = μW where μ = coefficient of friction and N = normal force. The normal force also equals the weight of the object W.
Now, since F - f = ma and a = 0 where a = acceleration and m = mass of block,
F - f = m(0) = 0
F - f = 0
F = f
Since the force applied equals the frictional force, we have that
F = μW and F = 23.7 N and W = 24.5 N
So, 23.7 N = μ(24.5 N)
μ = 23.7 N/24.5 N
μ = 0.97
Since μ = 0.97 < 1, the coefficient of friction causes the force on the object to be less than its initial reading on the spring scale.
Answer and Explanation:
Data provided in the question
Carbon mass = m
Initial speed = v_i
Coefficient = μk
Based on the above information, the expressions are as follows
a. By using the energy considerations the expression for the carton moving distance is
As we know that

where,





b. The initial speed of the carton if the factor of 3 risen, so the expression is




Answer:
B. Cant stop things from going wrong.
Explanation:
To me it's the only reasonable answer...
Its this (couldn’t write it down on here properly so i had to ss it)
Basically, it’s just the difference between the x values at the top and the difference between the Y values at the bottom.
Answer:
The answer is A
Explanation:
It is A because your body heat is warmer than the banana and when you hold it the heat is transferring over.