3x - y + z = 5 . . . (1)
x + 3y + 3z = -6 . . . (2)
x + 4y - 2z = 12 . . . (3)
From (2), x = -6 - 3y - 3z . . . (4)
Substituting for x in (1) and (3) gives
3(-6 - 3y - 3z) - y + z = 5 => -18 - 9y - 9z - y + z = 5 => -10y - 8z = 23 . . (5)
-6 - 3y - 3z + 4y - 2z = 12 => y - 5z = 18 . . . (6)
(6) x 10 => 10y - 50z = 180 . . . (7)
(5) + (7) => -58z = 203
z = 203/-58 = -3.5
From (6), y - 5(-3.5) = 18 => y = 18 - 17.5 = 0.5
From (4), x = -6 - 3(0.5) - 3(-3.5) = -6 - 1.5 + 10.5 = 3
x = 3, y = 0.5, z = -3.5
Answer:
The correct option is D.
i.e.
is the correct option.
The correct graph is shown in attached figure.
Step-by-step explanation:
Considering the function


![\mathrm{Range\:of\:}\frac{1}{x\left(x+4\right)}:\quad \begin{bmatrix}\mathrm{Solution:}\:&\:f\left(x\right)\le \:-\frac{1}{4}\quad \mathrm{or}\quad \:f\left(x\right)>0\:\\ \:\mathrm{Interval\:Notation:}&\:(-\infty \:,\:-\frac{1}{4}]\cup \left(0,\:\infty \:\right)\end{bmatrix}](https://tex.z-dn.net/?f=%5Cmathrm%7BRange%5C%3Aof%5C%3A%7D%5Cfrac%7B1%7D%7Bx%5Cleft%28x%2B4%5Cright%29%7D%3A%5Cquad%20%5Cbegin%7Bbmatrix%7D%5Cmathrm%7BSolution%3A%7D%5C%3A%26%5C%3Af%5Cleft%28x%5Cright%29%5Cle%20%5C%3A-%5Cfrac%7B1%7D%7B4%7D%5Cquad%20%5Cmathrm%7Bor%7D%5Cquad%20%5C%3Af%5Cleft%28x%5Cright%29%3E0%5C%3A%5C%5C%20%5C%3A%5Cmathrm%7BInterval%5C%3ANotation%3A%7D%26%5C%3A%28-%5Cinfty%20%5C%3A%2C%5C%3A-%5Cfrac%7B1%7D%7B4%7D%5D%5Ccup%20%5Cleft%280%2C%5C%3A%5Cinfty%20%5C%3A%5Cright%29%5Cend%7Bbmatrix%7D)


So, the correct graph is shown in attached figure.
Therefore, the correct option is D.
i.e.
is the correct option.
Answer:
Here's how to solve
Step-by-step explanation:
Okay so 13 -5
What can you add to 5 to get 13?
5+5=10
5+6=11
5+7=12
5+8=13
8 would be your answer.
Answer:
standard error of the mean = 1.6960
Step-by-step explanation:
Given -
Mean
= 53 minutes
Standard deviation ( s ) = 53.9 minutes
n = 1010
standard error of the mean =
=
= 
= 1.6960
minus 4 both sides
square both sides
x+2=4
minus 2
x=2
<span>the answer is
x = 2; not extraneous</span>