Answer:
g NaCl = 424.623 g
Explanation:
<em>C</em> NaCl = 3.140 m = 3.140 mol NaCl / Kg solvent
∴ solvent: H2O
∴ mass H2O = 2.314 Kg
mol NaCl:
⇒ mol NaCl = (3.140 mol NaCl/Kg H2O)×(2.314 Kg H2O) = 7.266 mol NaCl
∴ mm NaCl = 58.44 g/mol
⇒ g NaCl = (7.266 mol NaCl)×(58.44 g/mol) = 424.623 g NaCl
Oxygen, fluorine and iodine are diatomic elements. Flourine is more reactive than the other two because it is the closest away to filling its outer layer of electrons and becoming stable like a noble gas.
Obviously since plant cell contains chloroplasts.
To
determine the empirical formula of the compound given, we need to determine the ratio of each element in the compound. To do that we assume to have 100 grams sample
of the compound with the given composition. Then, we calculate for the number
of moles of each element. We do as follows:<span>
mass moles
C 56.79 4.73
H 6.56 6.50
O 28.37 1.77
N 8.28 0.59
Dividing the number of moles of each element with
the smallest value, we will have the empirical formula:
</span> moles ratio
C 4.73 / 0.59 8
H 6.50 / 0.59 11
O 1.77 / 0.59 3
N 0.59 / 0.59 1<span>
</span><span>
The empirical formula would be C8H11O3N.</span>