At constant temperature and pressure, If the amount of gas increases to the given value, its volume also increases to 20.85L.
<h3>
What is
Avogadro's law?</h3>
Avogadro's law states that "equal volumes of all gases, at the same temperature and pressure, have the same number of molecules."
It is expressed as;
V₁/n₁ = V₂/n₂
Given the data in the question;
- Initial amount of gas n₁ = 2moles
- Initial volume v₁ = 13.9L
- Final amount of gas n₁ = 3moles
V₁/n₁ = V₂/n₂
V₁n₂ = V₂n₁
V₂ = V₁n₂ / n₁
V₂ = (13.9L × 3moles) / 2moles
V₂ = 41.7molL / 2mol
V₂ = 20.85L
At constant temperature and pressure, If the amount of gas increases to the given value, its volume also increases to 20.85L.
Learn more about Avogadro's law here: brainly.com/question/15613065
#SPJ1
The first element discovered through synthesis was technetium<span>—its discovery being definitely confirmed in 1936. Hope that helps.</span>
2.5X20=50g
50g should be the right answer
Mass=volumeXdenisty.
Answer:
65.08 g.
Explanation:
- For the reaction, the balanced equation is:
<em>2AlCl₃ + 3Br₂ → 2AlBr₃ + 3Cl₂,</em>
2.0 mole of AlCl₃ reacts with 3.0 mole of Br₂ to produce 2.0 mole of AlBr₃ and 3.0 mole of Cl₂.
- Firstly, we need to calculate the no. of moles of 36.2 grams of AlCl₃:
<em>n = mass/molar mass</em> = (36.2 g)/(133.34 g/mol) = <em>0.2715 mol.</em>
<u><em>Using cross multiplication:</em></u>
2.0 mole of AlCl₃ reacts with → 3.0 mole of Br₂, from the stichiometry.
0.2715 mol of AlCl₃ reacts with → ??? mole of Br₂.
∴ The no. of moles of Br₂ reacts completely with 0.2715 mol (36.2 g) of AlCl₃ = (0.2715 mol)(3.0 mole)/(2.0 mole) = 0.4072 mol.
<em>∴ The mass of Br₂ reacts completely with 0.2715 mol (36.2 g) of AlCl₃ = no. of moles of Br₂ x molar mass</em> = (0.4072 mol)(159.808 g/mol
) = <em>65.08 g.</em>
The phosphate group of one nucleotide bonds covalently with the sugar molecule of the next nucleotide, and so on, forming a long polymer of nucleotide monomers. The sugar–phosphate groups line up in a “backbone” for each single strand of DNA, and the nucleotide bases stick out from this backbone. The carbon atoms of the five-carbon sugar are numbered clockwise from the oxygen as 1′, 2′, 3′, 4′, and 5′ (1′ is read as “one prime”). The phosphate group is attached to the 5′ carbon of one nucleotide and the 3′ carbon of the next nucleotide. In its natural state, each DNA molecule is actually composed of two single strands held together along their length with hydrogen bonds between the bases.