Remember that a cation will be smaller than its neutral atom, and an anion will be larger than its neutral atom. This would automatically eliminate answer choices A and D.
Also keep in mind that atomic radii decreases from left to right as you move along a periodic table. It also decreases from bottom up.
Atomic radii increases as you move from right to left and as you go from up to down.
As bromine is higher up in the periodic table than Iodine, it would have a smaller radius. Iodine would have a larger radius.
The correct answer is B. Br
<h2>
Answer:</h2>
In <u>Combination reaction</u>, two or more elements combined to form one compound of different properties.
- C(s) + O2(g) ⇢ CO2(g).
- H2(g) + O2(g) ⇢ H20(l).
In <u>Displacement reation</u>, the high reactive element displaces the low reactive element and formed compound of different properties.
- Fe(s) + CuSo4(aq) ⇢ FeSo4(aq) + Cu(s).
- AgNO3(aq) + Cu(s) ⇢ CuNO3(aq) + Ag(s).
Most of the substances found on earth are compounds.
(water is made up of 2 elements)
(a baseball is larger than a golf ball by default)
(water has a pH value of 7)
Hope this helps u!
Answer:
the entropy change for the surroundings when 1.62 moles of CH4(g) react at standard conditions is −8.343 J/K
Explanation:
The balanced chemical equation of the reaction in the question given is:

Using standard thermodynamic data at 298K.
The entropy of each compound above are listed as follows in a respective order.
Entropy of (CH4(g)) = 186.264 J/mol.K
Entropy of (O2(g)) = 205.138 J/mol.K
Entropy of (CO2(g)) = 213.74 J/mol.K
Entropy of (H2O(g)) = 188.825 J/mol.K
The change in Entropy (S) of the reaction is therefore calculated as follows:


= -5.15 J/mol.K
Given that :
the number of moles = 1.62 of CH4(g) react at standard conditions.
Then;
The change in entropy of the rxn 
= −8.343 J/K