A.) To find the maximum height, we can take the derivative of h(t). This will give us the rate at which the horse jumps (velocity) at time t.
h'(t) = -32t + 16
When the horse reaches its maximum height, its position on h(t) will be at the top of the parabola. The slope at this point will be zero because the line tangent to the peak of a parabola is a horizontal line. By setting h'(t) equal to 0, we can find the critical numbers which will be the maximum and minimum t values.
-32t + 16 = 0
-32t = -16
t = 0.5 seconds
b.) To find out if the horse can clear a fence that is 3.5 feet tall, we can plug 0.5 in for t in h(t) and solve for the maximum height.
h(0.5) = -16(0.5)^2 + 16(-0.5) = 4 feet
If 4 is the maximum height the horse can jump, then yes, it can clear a 3.5 foot tall fence.
c.) We know that the horse is in the air whenever h(t) is greater than 0.
-16t^2 + 16t = 0
-16t(t-1)=0
t = 0 and 1
So if the horse is on the ground at t = 0 and t = 1, then we know it was in the air for 1 second.
Answer: y+7 = 3(x-5) A
Step-by-step explanation: Plug in the points into y-y1= m(x-b)
Answer:
-7
Step-by-step explanation:
x = y - 6
2x = 5y - 9
Use the internet for full steps
x = -7
y = -1
Answer: cost of 1 pot of ivy = $12
Cost of 1 rose bush =$ 10
Step-by-step explanation:
Step 1
Let rose bushes be represented as r
and pot of ivy be represented as p
such that Amy who spent 82 dollars on 7 rose bushes and 1 pot of ivy can be expressed as
7 r + p = 82----- eqn 1
Rob who spent 74 on 5 rose bushes and 2 pots of ivy can be expressed as
5r +2 p = 74----- eqn 2
Step 2
Solving
7 r + p = 82----- eqn 1
5r +2 p = 74----- eqn 2
By elimination method Multiply eqn 1 by 5 and eqn 2 by 7
35r+ 5p= 410--- eqn 3
35r+ 14p =518--- eqn 4
Subtracting eqn 4 from eqn 3
9p = 108
p = 108/9
p=12
p = pot of ivy = $12
therefore rose bush wll be ( from equation 1)
7r+ p= 82
7r=82-12
7r= 70 r= 70/7
r= rose bush =$ 10
Answer:
1) 2b + 6
2) 8w - 12
3) 2b + 6 + 6x + 20
4) 9w^2 + 27 + 8 - 27
5) Sorry.
Step-by-step explanation: