Hello!
On the periodic table, as we go down the periodic table, the ionization energy decreases, but as we go across the periodic table (left to right), the ionization increases.
On the periodic table, lithium (Li) is located in column one, beryllium (Be) is located in column two, and (B) boron is located in column 13. As stated above, when we go across the periodic table (left to right), the ionization increases.
Therefore, the element with the highest ionization energy is Boron, or symbol B on the period table.
Answer:
A 50-mL volumetric cylinder with 0.1-mL accuracy scale should be used for this purpose since three significant figures of accuracy are required.
Explanation:
Hello,
A 50-mL volumetric cylinder with 0.1-mL accuracy scale should be used for this purpose since three significant figures of accuracy are required.
Best regards.
Answer:
Explanation:
Unit 10 - Acid/Base ... (a) Mg(OH. 2. ) (b) Mg(OH). 2. (c) Mg. 2. OH. (d) MgOH. 2. Standard: ... balanced equation for these neutralization reactions: 3. HCl + NaOH → ... H2CO3 + Ca(OH)2 → ... C5.7B Predict products of an acid-base neutralization. 8. 2 NH4OH + H2S ...An Arrhenius base is a compound that increases the OH − ion concentration in ... and a base is called a neutralization reaction and can be represented as follows: ... chemical equation for the neutralization reaction between HCl and Mg(OH) 2. ... acid, an Arrhenius base, or neither. a) NaOH. b) C 2H 5OH. c) H 3PO 4. 6
This question requires the knowledge of density.
The density of ethyl alcohol = 789 kg m⁻³
The density of water = 1000 kg m⁻³
Density = Mass / Volume
By applying ethyl alcohol,
789 kg m⁻³ = Mass / 0.9 m³
Mass = 710.1 kg
hence the mass of 0.9 m³ ethyl alcohol is 710.1 kg.
Then by applying water,
1000 kg m⁻³ = 710.1 kg / Volume
Volume = 0.7101 m³
= 0.7 m³
hence the equal water volume is 0.7 m³