25. <u>Step-by-step explanation:</u>


To find the foci, first we must find the length of the foci using the formula:

Then add the c-value to the h (or k)-value that represents the major.
b² - a² = c²
25 - 16 = c²
9 = c²
±3 = c
The center is (0, 0) and the major is the y-value so the foci is:
(0, 0+3) and (0, 0-3) ⇒ (0, 3) and (0, -3)
26. Answers
Follow the same steps as #25:
Center: (0, 0)
Vertices (7, 0) and (-7, 0)
Co-vertices: (0, 3) and (0, -3)
foci: (2√10, 0) and (-2√10, 0)
length of major: 14
length of minor: 6