Answer:
Electronegativity = 1.87.
Ionic radius = 109 pm.
Atomic radius = -39 pm
First ionization energy = 410 kJ/mol
Explanation:
Hello!
In this case, since electronegativity, ionic radius, atomic radius and first ionization energy are periodic properties that have specific trends, we can summarize it by realizing that oxygen and beryllium belong the same period 2 and differ in group, 6A and 2A respectively.
In such a way, the required comparison is written below:
Electronegativity = 3.44 (oxygen) - 1.57 (beryllium) = 1.87.
Ionic radius = 140 pm (oxygen)- 31 pm (beryllium) = 109.
Atomic radius = 73 pm (oxygen) - 112 pm (beryllium) = -39 pm
First ionization energy = 1310 kJ/mol (oxygen) - 900 kJ/mol (beryllium) = 410 kJ/mol
It means that electronegativity, ionic radius and first ionization energy increases from left to right whereas the atomic radius from right to left.
Best regards!
Answer:
2726.85 °C
Explanation:
Given data:
Initial pressure = 565 torr
Initial temperature = 27°C
Final temperature = ?
Final pressure = 5650 torr
Solution:
Initial temperature = 27°C (27+273 = 300 K)
According to Gay-Lussac Law,
The pressure of given amount of a gas is directly proportional to its temperature at constant volume and number of moles.
Mathematical relationship:
P₁/T₁ = P₂/T₂
Now we will put the values in formula:
T₂ = P₂T₁ /P₁
T₂ = 5650 torr × 300 K / 565 torr
T₂ = 1695000 torr. K /565 torr
T₂
= 3000 K
Kelvin to degree Celsius:
3000 K - 273.15 = 2726.85 °C
The answer should be B - Nitrogen Dioxide.
Hey :)
The answer is B) Nitrogen, which has an electronegativity of 3.04
Hope this helps!
<span>Answer: option (1) solubility of the solution increases.
</span><span />
<span>Justification:
</span><span />
<span>The solubility of substances in a given solvent is temperature dependent.
</span><span />
<span>The most common behavior of the solubility of salts in water is that the solubiilty increases as the temperature increase.
</span><span />
<span>To predict with certainty the solubility at different temperatures you need the product solubility constants (Kps), which is a constant of equlibrium of the dissolution of a ionic compound slightly soluble in water, or a chart (usually experimental chart) showing the solubilities at different temperatures.
</span><span />
<span>KClO₃ is a highly soluble in water, so you do not work with Kps.
</span><span />
<span>You need the solubility chart or just assume that it has the normal behavior of the most common salts. You might know from ordinary experience that you can dissolve more sodium chloride (table salt) in water when the water is hot. That is the same with KClO₃.
</span><span>The solubility chart of KlO₃ is almost a straight line (slightly curved upward), with positive slope (ascending from left to right) meaning that the higher the temperature the more the amount of salt that can be dissolved.</span>