The answer for this issue is:
The chemical equation is: HBz + H2O <- - > H3O+ + Bz-
Ka = 6.4X10^-5 = [H3O+][Bz-]/[HBz]
Let x = [H3O+] = [Bz-], and [HBz] = 0.5 - x.
Accept that x is little contrasted with 0.5 M. At that point,
Ka = 6.4X10^-5 = x^2/0.5
x = [H3O+] = 5.6X10^-3 M
pH = 2.25
(x is without a doubt little contrasted with 0.5, so the presumption above was OK to make)
Answer:
CuBr₂(aq) + Pb(CH₃COO)₂(aq) → Cu(CH₃COO)₂(aq) + PbBr₂ (s)↓
Explanation:
We identify the reactants:
CuBr₂ and Pb(CH₃COO)₂
The products will be: Cu(CH₃COO)₂ and PbBr₂
You may know these information:
Salts from acetate are soluble.
Bromide can make solid salts with these cations: Ag⁺, Pb²⁺, Hg₂²⁺, Cu⁺
PbBr₂ is formed, so this will be our precipitate
The equation is:
CuBr₂(aq) + Pb(CH₃COO)₂(aq) → Cu(CH₃COO)₂(aq) + PbBr₂ (s)↓
Answer:
Potassium
1s2 2s2 2p6 3s2 3p6 4s1
Explanation:
The atom having only one electron its outermost shell must belong to an element in group one of the periodic table.
Having noted that, we proceed to find out what element in group one that has the atom just described in the question.
That atom must belong to an element in the fourth period. The only group 1 element in the fourth period is potassium.
The electron configuration of potassium is;
1s2 2s2 2p6 3s2 3p6 4s1
Answer:
58.316 is the formula weight of magnesium hydroxide