<h2><u>Projectile</u><u> </u><u>motion</u><u>:</u></h2>
<em>If</em><em> </em><em>an</em><em> </em><em>object is given an initial velocity</em><em> </em><em>in any direction and then allowed</em><em> </em><em>to travel freely under gravity</em><em>, </em><em>it</em><em> </em><em>is</em><em> </em><em>called a projectile motion</em><em>. </em>
It is basically 3 types.
- horizontally projectile motion
- oblique projectile motion
- included plane projectile motion
Answer:The wavelength of a 1-kHz sound traveling in water would be 150 cm.
Explanation:This is because in the equation, v(velocity) = 1500 m/s, and f (frequency) = 1 kHz.
Answer:
emf = 11.667 V
Explanation:
Given: charge q = 0.060 C, electric potential energy E =0.70 J,
Solution :
by definition 1 volt = 1 joule per coulomb
so Voltage = emf = E/C
emf = 0.70 J / 0.060 C
emf = 11.667 V
If it is completely elastic, you can calculate the velocity of the second ball from the kinetic energy
<span>v1 = velocity of #1 </span>
<span>v1' = velocity of #1 after collision </span>
<span>v2' = velocity of #2 after collision. </span>
<span>kinetic energy: v1^2 = v1' ^2 + v2' ^2 (1/2 and m cancel out) </span>
<span>5^2 = 4.35^2 + v2' ^2 </span>
<span>v2 = 2.46 m/s <--- ANSWER</span>