Answer:
D. If a home were wired in series, every light and appliance would have to be turned on in order for any light or appliance to work.
Explanation:
In a series circuit, all the appliances are connected on the same branch of the circuit, one after the other. This means that the current flowing throught them is the same. However, this means also that if one of the appliance is turned off (so, its switch is open), that appliance breaks the circuit, so the current can no longer flow through the other appliances either.
On the contrary, when the appliances are connected in parallel, they are connected in different branches, so if one of them is switched off, the other branches continue working unaffacted by it.
Answer:

Explanation:
Given that the airplane starts from the rest (this is initial velocity equals to zero) and accelerates at a constant rate, position can be described like this:
where x is the position, t is the time a is the acceleration and
is initial velocity. In this way acceleration can be found.
.
Now we are able to found velocity at any time with the formula: 
Answer:
0.42 m/s²
Explanation:
r = radius of the flywheel = 0.300 m
w₀ = initial angular speed = 0 rad/s
w = final angular speed = ?
θ = angular displacement = 60 deg = 1.05 rad
α = angular acceleration = 0.6 rad/s²
Using the equation
w² = w₀² + 2 α θ
w² = 0² + 2 (0.6) (1.05)
w = 1.12 rad/s
Tangential acceleration is given as
= r α = (0.300) (0.6) = 0.18 m/s²
Radial acceleration is given as
= r w² = (0.300) (1.12)² = 0.38 m/s²
Magnitude of resultant acceleration is given as


= 0.42 m/s²
Answer:
The equation of D = m/V
Where D = density
m = mass
and V = volume
We are solving for V, so with the manipulation of variables we multiply V on both sides giving us
V(D) = m
now we divide D on both sides giving us
V = m/D
We know our mass which is 600g and our density is 3.00 g/cm^3
so
V = 600g/3.00g/cm^3 = 200cm^3 or 200mL
a cubic centimeter (cm^3) is one of the units for volume. It's exactly like mL. 1 cm^3 = 1 mL
If you wish to change it to L, you'd have to convert
Explanation:
The most common metals used for permanent magnets are iron, nickel, cobalt and some alloys of rare earth metals