Answer:
when the mass of the bottle is 0.125 kg, the average height of the beanbag is 0.35 m.
when the mass of the bottle is 0.250 kg, the average maximum height of the beanbag is 0.91m.
when the mass of the bottle is 0.375 kg, the average maximum height of the beanbag is 1.26m.
when the mass of the bottle is 0.500 kg, the average maximum height of the beanbag is 1.57m.
Explanation:
its period should be the amount it takes to cycle from cycle to cycle so it would be 10 and your frequency would have to be calculated by taking 10 and dividing by 2 since that is how many cycles you have done so your frequency is 5
plz mark me brainliest
Answer:
4.64m/s
Explanation:
We can use the formula [ v = √2gh ] to solve for this problem. We know that g is constant acceleration (9.8), and h is height (1.1).
v = √2(9.8)(1.1)
v ≈ 4.64m/s
Best of Luck!
Answer:
The amount of energy is directly proportional to the photon's electromagnetic frequency and thus, equivalently, is inversely proportional to the wavelength. The higher the photon's frequency, the higher its energy. Equivalently, the longer the photon's wavelength, the lower its energy.
Explanation:
Answer: 846°C
Explanation:
The quantity of Heat Energy (Q) required to heat bismuth depends on its Mass (M), specific heat capacity (C) and change in temperature (Φ)
Thus, Q = MCΦ
Given that:
Q = 423 joules
Mass of bismuth = 4.06g
C = 0.123 J/(g°C)
Φ = ?
Then, Q = MCΦ
423 J = 4.06g x 0.123 J/(g°C) x Φ
423 J = 0.5J/°C x Φ
Φ = (423J/ 0.5g°C)
Φ = 846°C
Thus, the change in temperature of the sample is 846°C