Answer:
The size of the force that pushes the wall is 12,250 N.
Explanation:
Given;
mass of the wrecking ball, m = 1500 kg
speed of the wrecking ball, v = 3.5 m/s
distance the ball moved the wall, d = 75 cm = 0.75 m
Apply the principle of work-energy theorem;
Kinetic energy of the wrecking ball = work done by the ball on the wall
¹/₂mv² = F x d
where;
F is the size of the force that pushes the wall
¹/₂mv² = F x d
¹/₂ x 1500 x 3.5² = F x 0.75
9187.5 = 0.75F
F = 9187.5 / 0.75
F = 12,250 N
Therefore, the size of the force that pushes the wall is 12,250 N.
Explanation:
The new volume of water = 25 ml
The old volume of water = 15 ml
The difference = 25 - 15 but what are the units?
Since the question asks for force, the units must start out as 10 mL
In water 1 mL has a mass of 1 gram, so the answer is 10 grams.
Grams are units of mass, not weight. You should convert this into newtons.
10 grams = 1/1000 = 0.01 kg
1 kg has a weight of 9.81 Newtons
0.01 kg has a weight 0.081 Newtons
If you have never seen a Newton before, then the answer is 10 grams
Answer:
Geothermal!!
Explanation:
Geo means earth! Just like Hydro means water, and Pyro means fire :)
Here, we know, according to 3rd Equation of Kinematics,
v² - u² = 2as
Here, u = 0 [ Free fall ]
a = 9.8 m/s² [ constant value for the Earth system ]
s = 15 m
Substitute their values,
v² - 0² = 2 * 9.8 * 15
v² = 294
v = √294
v = 17.15 m/s
In short, Your Answer would be Option D
Hope this helps!