White blood cell,also called leukocyte or white corpuscle,a cellular component of the blood that lacks hemoglobin,has a nucleus,is capable of motility,and defends the body against infection and disease by ingesting foreign materials and cellular debris,by destroying infectious agents and cancer cells.
<span>The ability to navigate, hunt, and communicate by electric current in water most likely helps make up for the effect of vision. The answer to your question is VISION.
</span>If fish live in a dark, murky water, that means that their sense of vision is affected. In dark, murky water they could not see anything. So, fish that lives in this kind of water developed the ability to <span>o navigate, hunt, and communicate by electric current in water. This ability is known as electroreception. Among fish, electroreception is present in some sharks and rays, and electric eels.</span><span>
I hope that this is the answer that you were looking for and it has helped you.
</span>
Answer:
The second distance of the sound from the source is 431.78 m..
Explanation:
Given;
first distance of the sound from the source, r₁ = 1.48 m
first sound intensity level, I₁ = 120 dB
second sound intensity level, I₂ = 70.7 dB
second distance of the sound from the source, r₂ = ?
The intensity of sound in W/m² is given as;
![dB = 10 Log[\frac{I}{I_o} ]\\\\For \ 120 dB\\\\120 = 10Log[\frac{I}{1*10^{-12}}]\\\\12 = Log[\frac{I}{1*10^{-12}}]\\\\10^{12} = \frac{I}{1*10^{-12}}\\\\I = 10^{12} \ \times \ 10^{-12}\\\\I = 1 \ W/m^2](https://tex.z-dn.net/?f=dB%20%3D%2010%20Log%5B%5Cfrac%7BI%7D%7BI_o%7D%20%5D%5C%5C%5C%5CFor%20%5C%20120%20dB%5C%5C%5C%5C120%20%3D%2010Log%5B%5Cfrac%7BI%7D%7B1%2A10%5E%7B-12%7D%7D%5D%5C%5C%5C%5C12%20%3D%20%20Log%5B%5Cfrac%7BI%7D%7B1%2A10%5E%7B-12%7D%7D%5D%5C%5C%5C%5C10%5E%7B12%7D%20%3D%20%5Cfrac%7BI%7D%7B1%2A10%5E%7B-12%7D%7D%5C%5C%5C%5CI%20%3D%2010%5E%7B12%7D%20%5C%20%5Ctimes%20%5C%2010%5E%7B-12%7D%5C%5C%5C%5CI%20%3D%201%20%5C%20W%2Fm%5E2)
![For \ 70.7 dB\\\\70.7 = 10Log[\frac{I}{1*10^{-12}}]\\\\7.07 = Log[\frac{I}{1*10^{-12}}]\\\\10^{7.07} = \frac{I}{1*10^{-12}}\\\\I = 10^{7.07} \ \times \ 10^{-12}\\\\I = 1 \times \ 10^{-4.93} \ W/m^2](https://tex.z-dn.net/?f=For%20%5C%2070.7%20dB%5C%5C%5C%5C70.7%20%3D%2010Log%5B%5Cfrac%7BI%7D%7B1%2A10%5E%7B-12%7D%7D%5D%5C%5C%5C%5C7.07%20%3D%20%20Log%5B%5Cfrac%7BI%7D%7B1%2A10%5E%7B-12%7D%7D%5D%5C%5C%5C%5C10%5E%7B7.07%7D%20%3D%20%5Cfrac%7BI%7D%7B1%2A10%5E%7B-12%7D%7D%5C%5C%5C%5CI%20%3D%2010%5E%7B7.07%7D%20%5C%20%5Ctimes%20%5C%2010%5E%7B-12%7D%5C%5C%5C%5CI%20%3D%201%20%5Ctimes%20%5C%2010%5E%7B-4.93%7D%20%5C%20W%2Fm%5E2)
The second distance, r₂, can be determined from sound intensity formula given as;

Therefore, the second distance of the sound from the source is 431.78 m.
when velocity and time both are constant and when velocity will decrease the acceleration will be negative
Answer:
613373.65233 m/s
Explanation:
M = Mass of Sun = 
m = Mass of Earth
v = Velocity of Earth
r = Distance between Earth and Sun = 
= Radius of Earth = 
= Radius of Sun = 
In this system it is assumed that the potential and kinetic energies are conserved

The velocity of Earth would be 613373.65233 m/s