Answer: is neither an acid nor a base
Explanation: Water is a universal solvent which means it can dissolve most of the substances in it.
Water has high thermal heat capacity , which means large heat is required to heat the water.
Water is not always pure as it gets contaminated by various pollutants present in the atmosphere such as gases, bacteria and suspended matter.
Water is an amphoteric substance which can act as both acid and base, thus can donate and acept [texH^+[/tex] ions.Thus it is neither an acid nor a base.

Here water is accepting a proton, thus it acts as base.

Here water is donating a proton, thus it acts as acid.
482VP I think is the correct answer.
Answer:
Q = 0.50
No
Left
Explanation:
At a generic reversible equation
aA + bB ⇄ cC + dD
The reaction coefficient (Q) is the ratio of the substances concentrations:
![Q = \frac{[C]^c*[D]^d}{[A]^a*[B]^b}](https://tex.z-dn.net/?f=Q%20%3D%20%5Cfrac%7B%5BC%5D%5Ec%2A%5BD%5D%5Ed%7D%7B%5BA%5D%5Ea%2A%5BB%5D%5Eb%7D)
Solids and liquid water are not considered in this calculus.
When the reaction achieves equilibrium (concentrations are constant), the Q value is named as Kc, which is the equilibrium constant of the reaction. If Q > Kc, it indicates that the concentration of the products is higher, so, the reaction must progress to the left and form more reactants; if Q < Kc, than the concentrations of the reactants, are higher, so, the reaction progress to the right.
In this case:
Q = ![\frac{[NO_2]^2}{[N_2O_4]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BNO_2%5D%5E2%7D%7B%5BN_2O_4%5D%7D)

Q = 0.50
So, Q > Kc, the reaction is not at equilibrium and it progresses to the left.
Notice q=3/2, is half of the original q = 3(<span>1/2</span>)<span>t/28.8
your welcome
</span>
Answer:
6.9 ml of concentrate
Explanation:
100 ml of .1 M will require .01 moles
from a 1.45 M solution, .01 mole would be
.01 mole / ( 1.45 mole / liter) = 6.9 ml of the concentrate then dilute to 100 ml