46 gram of ethanol ≡ 1 mole of ethanol
1 gram of ethanol ≡ 1/46 mole of ethanol
10 gram of ethanol ≡ 1*10/46 mole of ethanol
=0.217 mole of ethanol
Citric acid has the molecular formula C6H8O7 so you can add the molar masses of the elements from the periodic table. C has a molar mass of 12.01 g/mol, H has 1.01 g/mol and O has 15.999 g/mol. Now you calculate the total molar mass= (6*12.01 + 8*1.01 + 7*15.999). This yields a molar weight of 192.124 g/mol (anhydrous)
Answer:
28.01g
Explanation:
Given the weight of one mole of Cabon as 12.01g and that of oxygen as 16.00g.
The molecular weight of a compound can be gotten by adding the molar weights of the elements that constitutes the compound .
The molecular weight of the compound CO is therefore
equal to the sum of the weight of both elements.
That’s = 12.01g + 16.00g
= 28.01g
Therefore, the molecular weight of CO is 28.01g
Answer:
The answer is 1.15m.
Since molality is defined as moles of solute divided by kg of solvent, we need to calculated the moles of H2SO4 and the mass of the solvent, which I presume is water.
We can find the number of H2SO4 moles by using its molarity
C=nV→nH2SO4=C⋅VH2SO4=6.00molesL⋅48.0⋅10−3L=0.288
Since water has a density of 1.00kgL, the mass of solvent is
m=ρ⋅Vwater=1.00kgL⋅0.250L=0.250 kg
Therefore, molality is
m=nmass.solvent=0.288moles0.250kg=1.15m