Explanation :
Dispersion forces are also known as London dispersion forces. It is the weakest force. Also, it is the part of the Van der Waals forces.
(1) This force is exhibited by all atoms and molecules.
(2) These forces are the result of the fluctuations in the electron distribution within molecules or atoms. Due to these fluctuations, the electric field is created. The magnitude of this force is explained in terms of Hamaker constant 'A'.
(3) Dispersion forces result from the formation of instantaneous dipoles in a molecule or atom. When electrons are more concentrated in a place, instantaneous dipoles formed.
(4) Dispersion force magnitude depends on the amount of surface area available for interactions. If the area increases, the size of the atom also increase. As a result, stronger dispersion forces.
So, the false statement is "Dispersion forces always have a greater magnitude in molecules with a greater molar mass".
Answer:
Explanation:
mass (m1) = 1150 kg
mass (m2) = 1900 kg
impulse (J) = 200 N.s
With what relative speed do the two parts separate because of the detonation?
since both parts separate, their relative speed = speed of m1 + speed of m2
- speed of m1 =
=
= 0.174 m/s
- speed of m2 =
=
= 0.105 m/s - relative speed = 0.174 + 0.105 = 0.279 m/s
Answer:
Ammonia, 
Explanation:
If a Rac variant, in which the residue at position 61 was replaced with an alanine (Rac-61A), was synthesized. Also, Wild-type Rac and Rac-61A were incubated separately with VopC.
In order to obtain data to support that VopC modifies Rac at residue 61, the samples should be analyzed for the presence of Ammonia (
and as such when ammonia is present in the sample containing Wild-type Rac but not in Rac-61A, this simply proves or provide the data to support that VopC modifies Rac at residue 61.
<em>Additionally, deamidation can be defined as the chemical conversion (hydrolysis) of an amide functional group such as glutamine, asparagine, in a polypeptide to another functional group such as glutamic acid or isoaspartic acid respectively by treating it with a strong acid (deamidate, transamidase). </em>