Answer:
50 Mph.
Explanation:
According to the National Severe Storms Laboratory, winds can really begin to cause damage when they reach <em><u>50 mph</u></em>. But here’s what happens before and after they reach that threshold, according to the Beaufort Wind Scale (showing estimated wind speeds): - at 19 to 24 mph, smaller trees begin to sway.
Explanation:
(a) Since, it is given that the blocks are identical so distribution of charge will be uniform on both the blocks.
Hence, final charge on block A will be calculated as follows.
Charge on block A =
= 4.35 nC
Therefore, final charge on the block A is 4.35 nC.
(b) As it is given that the positive charge is coming on block A
. This means that movement of electrons will be from A to B.
Thus, we can conclude that while the blocks were in contact with each other then electrons will flow from A to B.
Answer:
The equation of D = m/V
Where D = density
m = mass
and V = volume
We are solving for V, so with the manipulation of variables we multiply V on both sides giving us
V(D) = m
now we divide D on both sides giving us
V = m/D
We know our mass which is 600g and our density is 3.00 g/cm^3
so
V = 600g/3.00g/cm^3 = 200cm^3 or 200mL
a cubic centimeter (cm^3) is one of the units for volume. It's exactly like mL. 1 cm^3 = 1 mL
If you wish to change it to L, you'd have to convert
Explanation:
<h2>The option ( c ) is correct</h2>
Explanation:
When we apply the force on any body , the inertia comes into play . It is the tenancy of the the body to oppose the force which tends to change its state .
In first case the train tries to change its state from rest to motion . Thus the inertia of rest opposes this tendency.
In the second case , the train tries to come from motion to the state of rest . Thus again , inertia opposes it .
Therefore inertia is the factor which creates difficulty in both case . Hence option ( c ) is correct
A ray of light that strikes a surface is known as the <em>incident ray. (d)</em>