The position compared to that of home is a reference to displacement, I believe.
Displacement = x total - x initial
So I believe the answer is 5 blocks due north (if you’re walking linearly from your home), unless the questions is referring to relative displacement, in which then you’d need to use the Pythagorean theorem to find the hypotenuse between both positions. And then you’d have to find theta for the degrees between the south direction and the other unmentioned direction. But I don’t think that’s the case.
Distance refers to x total and doesn’t care for direction, as this refers to a scalar quantity opposed to a vector. Thus the equation is just
d = x
So 8 blocks + 3 blocks = a distance of eleven blocks walked total
Answer:
3.258 m/s
Explanation:
k = Spring constant = 263 N/m (Assumed, as it is not given)
x = Displacement of spring = 0.7 m (Assumed, as it is not given)
= Coefficient of friction = 0.4
Energy stored in spring is given by

As the energy in the system is conserved we have

The speed of the 8 kg block just before collision is 3.258 m/s
If you do this on Earth, then the acceleration of the falling object is 9.8 m/s^2 ... NO MATTER what it's mass is.
If its mass is 10 kg, then the force pulling it down is 98.1 Newtons. Most people call that the object's "weight".
Answer:
Therefore, the situation in which both the instantaneous velocity and acceleration become zero, is the situation when the ball reaches the highest point of its motion.
Explanation:
When a ball is thrown upward under the free fall action of gravity, it starts to loose its Kinetic Energy as it moves upward. As the ball moves in upward direction, its kinetic energy gradually converts into its potential energy. As a result the speed of the ball starts to decrease as it moves up. Therefore, at the highest point during its motion, the velocity of ball becomes zero and it stops at the highest point for a moment, and then it starts to fall back down, under the influence of gravitational force.
Therefore, the situation in which both the instantaneous velocity and acceleration become zero, is the situation <u>when the ball reaches the highest point of its motion.</u>