They emit b) more radiation compared to cooler objects.
This is because hotter objects have more kinetic energy (in order for the particles to vibrate- and so more infrared radiation circulates in its surroundings.)
Answer:
An increase in entropy
Explanation:
In ice, the molecules are very well ordered because of the H-bonds. As ice melts, the intermolecular forces are broken (requires energy), but the order is interrupted (so entropy increases). Water is more random than ice, so ice spontaneously melts at room temperature.
Just think about this rationally. Melting ice (or anything) will require heat put in (this is called the latent heat of fusion), so you automatically know that the change in enthalpy is going to be positive. In order to make the reaction spontaneous, delta G, the Gibbs free energy has to be negative. So now look at the formula Delta(G) = Delta(H) - T*Delta*(S). If you know that g is negative, and H is positive, then it is only possible if -T*Delta(S) is negative. If that is positive, then Delta(S) has to be positive. So theres your answer :). An increase in entropy
The state of matter is liquid.
Answer:
Like most other metals, Gallium is solid at room temperature (or liquid if it is too hot in your room). But, if it is held [in hands] for long enough, it melts in your hands, and doesn't poison you like Mercury would. This is because of its unusually low melting point of (~29 degree Centigrade).
- It melts once it reaches its melting point.
:)
Answer:
Moment=Force x Pivot
Explanation:
A moment is the turning effect of a force. Moments act about a point in a clockwise or anticlockwise direction.
Law of moments:
When an object is balanced (in equilibrium) the sum of the clockwise moments is equal to the sum of the anticlockwise moments.
How to calculate moments:
Moment=Force x Pivot