Answer:
2.14 × 10⁻³ molecules/RSP
3.31 × 10⁻³ molecules/ESP
Explanation:
Step 1: Calculate the number of moles of Acetaminophen per Regular Strength Pill (RSP)
A Regular Strength Pill has 1.29 × 10²¹ molecules of Acetaminophen per pill. To convert molecules to moles we will use Avogadro's number: there are 6.02 × 10²³ molecules in 1 mole of molecules.
1.29 × 10²¹ molecules/RSP × 1 mol/6.02 × 10²³ molecules = 2.14 × 10⁻³ molecules/RSP
Step 2: Calculate the number of moles of Acetaminophen per Extra Strength Pill (ESP)
An Extra Strength Pill has 1.99 × 10²¹ molecules of Acetaminophen per pill. To convert molecules to moles we will use Avogadro's number: there are 6.02 × 10²³ molecules in 1 mole of molecules.
1.99 × 10²¹ molecules/ESP × 1 mol/6.02 × 10²³ molecules = 3.31 × 10⁻³ molecules/ESP
Answer:
0.954
Explanation:
1000 grams is 1 kg
954 grams is 954/1000 kg or 0.954
I very much Disagree. The esophagus runs from your mouth to your stomach.
Answer:
6.22 × 10⁻⁵
Explanation:
Step 1: Write the dissociation reaction
HC₆H₅COO ⇄ C₆H₅COO⁻ + H⁺
Step 2: Calculate the concentration of H⁺
The pH of the solution is 2.78.
pH = -log [H⁺]
[H⁺] = antilog -pH = antilog -2.78 = 1.66 × 10⁻³ M
Step 3: Calculate the molar concentration of the benzoic acid
We will use the following expression.
Ca = mass HC₆H₅COO/molar mass HC₆H₅COO × liters of solution
Ca = 0.541 g/(122.12 g/mol) × 0.100 L = 0.0443 M
Step 4: Calculate the acid dissociation constant (Ka) for benzoic acid
We will use the following expression.
Ka = [H⁺]²/Ca
Ka = (1.66 × 10⁻³)²/0.0443 = 6.22 × 10⁻⁵