Since there is one mole of Ca^2+ in calcium acetate, its concentration is 0.80 mol/L.
<h3>What is concentration?</h3>
The term concentration has to do with the amount of substance in solution. The concentration can be measured in several units. Generally, concentration is expressed in molarity, molality, mass concentration units or percentage.
Now we are asked to find the amount concentration of calcium ions and acetate ions in a 0.80 mol/L solution of calcium acetate. The formula of calcium acetate is Ca(CH3COO)2.
Thus;
Ca(CH3COO)2(aq) ----> Ca^2+(aq) + 2CH3COO^-(aq)
It then follows that since there is one mole of Ca^2+ in calcium acetate, its concentration is 0.80 mol/L.
Learn more about concentration:brainly.com/question/10725862
#SPJ1
Watts........ or potential diffrence
Explanation:
(a) The given data is as follows.
Load applied (P) = 1000 kg
Indentation produced (d) = 2.50 mm
BHI diameter (D) = 10 mm
Expression for Brinell Hardness is as follows.
HB =
Now, putting the given values into the above formula as follows.
HB =
=
=
= 200
Therefore, the Brinell HArdness is 200.
(b) The given data is as follows.
Brinell Hardness = 300
Load (P) = 500 kg
BHI diameter (D) = 10 mm
Indentation produced (d) = ?
d = ![\sqrt{(D^{2} - [D - \frac{2P}{HB} \pi D]^{2})}](https://tex.z-dn.net/?f=%5Csqrt%7B%28D%5E%7B2%7D%20-%20%5BD%20-%20%5Cfrac%7B2P%7D%7BHB%7D%20%5Cpi%20D%5D%5E%7B2%7D%29%7D)
= ![\sqrt{(10 mm)^{2} - [10 mm - \frac{2 \times 500 kg}{300 \times 3.14 \times 10 mm}]^{2}}](https://tex.z-dn.net/?f=%5Csqrt%7B%2810%20mm%29%5E%7B2%7D%20-%20%5B10%20mm%20-%20%5Cfrac%7B2%20%5Ctimes%20500%20kg%7D%7B300%20%5Ctimes%203.14%20%5Ctimes%2010%20mm%7D%5D%5E%7B2%7D%7D)
= 4.46 mm
Hence, the diameter of an indentation to yield a hardness of 300 HB when a 500-kg load is used is 4.46 mm.