The total power emitted by an object via radiation is:

where:
A is the surface of the object (in our problem,


is the emissivity of the object (in our problem,

)

is the Stefan-Boltzmann constant
T is the absolute temperature of the object, which in our case is

Substituting these values, we find the power emitted by radiation:

So, the correct answer is D.
P waves<span> are produced by all earthquakes. They are compression </span>waves<span> that </span>form <span>when rocks break due to pressure in the Earth. S </span>waves<span> are secondary </span>waves<span> that are also created during an earthquake. They travel at a slower speed than the </span>p-waves<span>.
S waves are the waves that come after the earthquake and P waves
</span>
Could you please provide the options? :)
Answer:
1 W = 1 J / sec Definition of watt is 1 joule / sec
So if a bulb uses 75 J / sec it must use
75 J/s * 60 sec / min = 4500 J/min energy used by bulb
If bulb is 15% efficient then the light delivered is
P = 4500 J / min * .15 = 675 J / min
<span>This problem is relatively simple, in order to solve this problem the only formula you need to know is the formula for friction, which is:
Ff = UsN
where Us is the coefficient of static friction and N is the normal force.
In order to get the crate moving you must first apply enough force to overcome the static friction:
Fapplied = Ff
Since Fapplied = 43 Newtons:
Fapplied = Ff = 43 = UsN
and it was given that Us = 0.11, so all you have to do is isolate N by dividing both sides by 0.11
43/0.11 = N = 390.9 which is approximately 391 or C. 3.9x10^2</span>