Explanation:
one thing to know is that higher surface area = higher boiling point.
NaCl has the smallest surface area, so it's the first one.
H2O has less surface area than methane, so it's second.
Methane has more surface area than H20, so it's third.
The big molecule has the most surface area, so it's last
The answer is the upper right Fluorine is the most electronegative.
Answer:
E = 3.9 x 10⁻²⁰ J
Explanation:
<u>Step 1:</u>
Before you can find the energy of the light, you need to find the wavelength. To find the wavelength, you need to use two equations:
w = c / f
In this formula, "w" is the wavelength (m), "c" is the speed of light (m/s), and "f" is the frequency. "C" is a constant with the value 3.0 x 10⁸ m/s. Since you have been given frequency and the constant, you can plug these values into the equation and solve for wavelength.
w = c / f
w = (3.0 x 10⁸ m/s) / (5.9 x 10¹³ sec⁻¹)
w = 5.1 x 10⁻⁶ m
<u>Step 2:</u>
To find the energy, you need to use the following equation:
E = hc / w
In this formula, "E" is the energy (J), "h" is Planck's constant (J/s), and "c" and "w" are the same as above. "H" is a constant with the value 6.626 x 10⁻³⁴ J/s. Since you found the wavelength and have been given the constants, you can plug them into the equation and find energy.
E = hc / w
E = (6.626 x 10⁻³⁴ J/s)(3.0 x 10⁸ m/s) / (5.1 x 10⁻⁶ m)
E = (1.99 x 10⁻²⁵) / (5.1 x 10⁻⁶ m)
E = 3.9 x 10⁻²⁰ J
Mass of metal = mass of the flask and stopper with metal - mass of the flask and stopper empty
As per the data given:
Mass of the flask and stopper with metal = 144.076 g
Mass of the flask empty: you did not includ this information, but I searched it and found that the mass of the flask and stopper is 33.695 g
Then, the anwser is:
mass of metal = 144.076 g - 33.695 g = 110.381 g