Molar mass is the mass of 1 mol of substance.
Molar masses of compounds can be calculated by the sum of the products of molar masses of individual atoms by number of corresponding individual atoms.
Compound formula is C₉H₈O₄
the molar masses of the atoms making up the compound
C - 12 g/mol x 9 C = 108
H - 1 g/mol x 8 H = 8
O - 16 g/mol x 4 O = 64
therefore molar mass of aspirin = 108 + 8 + 64 = 180 g/mol
answer is 3.180
=<span><span><span><span><span><span><span><span><span>148.413159d</span><span>f2</span></span>i</span>l</span><span>o4</span></span>s</span>y</span>+<span><span>a<span>l2</span></span><span>o3</span></span></span>+<span>a<span>l is the answer and have a nice day :)</span></span></span>
<span>Since one is negative and one is positive they are held together by their electrostatic attraction to each other, much like how a north and south pole of a magnet attract.</span>
Answer:
detail is given below.
Explanation:
This law was given by French chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.
Law of conservation of mass:
According to the law of conservation mass, mass can neither be created nor destroyed in a chemical equation.
For example:
In given photosynthesis reaction:
6CO₂ + 6H₂O → C₆H₁₂O₆ + 6O₂
The given equation is balanced chemical equation of photosynthesis. There are six carbon atoms, eighteen oxygen atoms and twelve hydrogen atoms on the both side of equation so this reaction followed the law of conservation of mass.
If equation is not balanced,
CO₂ + H₂O → C₆H₁₂O₆ + O₂
It can not follow the law of conservation of mass because mass is not equal on both side of equation.
Answer:
An addition reaction
Step-by-step explanation:
In an addition reaction, two or more molecules come together to form a single product, for example,
C₂H₂ + 2Cl₂ ⟶ C₂H₂Cl₄
This reaction consists of two successive additions. The product of the first reaction becomes a reactant and adds a second molecule of Cl₂ to form C₂H₂Cl₄
C₂H₂ + Cl₂ ⟶ <em>C₂H₂Cl₂
</em>
<em><u>C₂H₂Cl₂</u></em><u> + Cl₂ ⟶ C₂H₂Cl₄
</u>
C₂H₂ + 2Cl₂ ⟶ C₂H₂Cl₄