1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Oksana_A [137]
1 year ago
5

Review. From a large distance away, a particle of mass 2.00 g and charge 15.0σC is fired at 21.0 i^ m/s straight toward a second

particle, originally stationary but free to move, with mass 5.00g and charge 8.50σC. Both particles are constrained to move only along the x axis (b) Find the distance of closest approach. After the interaction, the particles will move far apart again. At this time, find the velocity on
Physics
1 answer:
MissTica1 year ago
5 0

(a)

Determine the system's initial configuration at ri = infinite particle separation and the system's final configuration at the point of closest approach.

Since the two-particle system is not being affected by any outside forces, we may treat it as an isolated system for momentum and use the momentum conservation law.

m1v1 + m1v2 = (m1+m2)v

The second particle's starting velocity is zero, so:

m1v1  = (m1+m2)v

After substituting the values we get,

v = 6i m/s

(b)

Since the two particle system is also energy-isolated, we may use the energy-conservation principle.

dK + dU = 0

Ki +Ui = Kf + Uf

Substituting the values,

1/2m1v1^2i + 1/2 m2v2^2i + 0 = 1/2m1v1^2f + 1/2m2v2^2f +ke q1q2/rf

The second particle's initial speed is 0 (v2 = 0). Additionally, both the first and second particle's final velocity have the same value, v. Put these values in place of the preceding expression:

1/2m1v1^2i  = 1/2m1v1^2 + 1/2m2v2^2 +ke q1q2/rf

After solving we get,

rf = 2ke q1q2 / m1v1^2 - (m1+m2)v^2

Substituting the values we get,

rf = 3.64m

(c)

v1f = (m1-m2 / m1 + m2) v1i

v1f  = -9i m/s

(d)

v2f =  (2m1/ m1 +m2) v1i

After substituting the values,

v2f = 12i m/ s

Question :

Review. From a large distance away, a particle of mass 2.00 g and charge 15.0 \muμC is fired at 21.0 m/s straight toward a second particle, originally stationary but free to move, with mass 5.00 g and charge 8.50 \muμC. Both particles are constrained to move only along the x axis. (a) At the instant of closest approach, both particles will be moving at the same velocity. Find this velocity. (b) Find the distance of closest approach. After the interaction, the particles will move far apart again. At this time, find the velocity of (c) the 2.00-g particle and (d) the 5.00-g particle. \hat{i}

To learn more about  momentum conservation law click on the link below:

brainly.com/question/7538238

#SPJ4

You might be interested in
If a sheep is running at 3.0 m/s with a mass of 60 kg what is its kinetic energy​
borishaifa [10]

Answer:270joules

Explanation:KE = 1/2mv^2

KE = 1/2(60kg)(3.0)^2 = 270 Joules

8 0
3 years ago
Help my in science state of matter
Arada [10]
I would say the last option, since with an increase in temperature, water molecules will speed up.
7 0
2 years ago
Read 2 more answers
Why do the constellations seem to move around in the sky?.
Gnoma [55]

Answer: As Earth spins on its axis, we, as Earth-bound observers, spin past this background of distant stars. As Earth spins, the stars appear to move across our night sky from east to west, for the same reason that our Sun appears to “rise” in the east and “set” in the west.

Explanation:

8 0
2 years ago
Orbital Motion<br> Project: Career Multimedia Presentation
Yuliya22 [10]

Answer:

can you post the full question plz

Explanation:

4 0
2 years ago
Three resistors connected in series have potential differences across them labeled /\V1 , /\V2 , and /\V3. What expresses the po
Brrunno [24]

Answer:

\Delta V=\Delta V_1+\Delta V_2+\Delta V_3

Explanation:

We are given that three resistors R1, R2 and R3 are connected in series.

Let

Potential difference across R_1=\Delta V_1

Potential difference across R_2=\Delta V_2

Potential difference across R_3=\Delta V_3

We know that in series  combination

Potential difference ,V=V_1+V_2+V_3

Using the formula

\Delta V=\Delta V_1+\Delta V_2+\Delta V_3

Hence, this is required expression for potential difference.

3 0
3 years ago
Other questions:
  • The bottom of the inner curve of a hook is called
    6·1 answer
  • 1. A meteorologist describes a tropical storm as traveling northwest at 50 mi/h. Which attribute of the storm's motion has the m
    7·1 answer
  • Which characteristics is common in mature rivers river
    7·2 answers
  • An object has a fixed volume and a variable shape before it changes state.
    14·2 answers
  • You could use an elevator or stairs to lift a box to the tenth floor. Which has greater energy? Why?
    15·1 answer
  • In a particular television picture tube, the measured beam current is 23.3 µA . How many electrons strike the tube screen every
    6·1 answer
  • Question 3 (1 point)<br> The nucleus occupies most of the space of an atom<br> True<br> O False
    14·1 answer
  • Where is the centre of mass of a system of two particles is situated?​
    10·1 answer
  • A child pushes his younger brother with 54 newtons of force, causing him to accelerate at 3.8 m/s/s. Assuming no friction, what
    13·1 answer
  • Protect your plants against ________ off disease​
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!