1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Oksana_A [137]
1 year ago
5

Review. From a large distance away, a particle of mass 2.00 g and charge 15.0σC is fired at 21.0 i^ m/s straight toward a second

particle, originally stationary but free to move, with mass 5.00g and charge 8.50σC. Both particles are constrained to move only along the x axis (b) Find the distance of closest approach. After the interaction, the particles will move far apart again. At this time, find the velocity on
Physics
1 answer:
MissTica1 year ago
5 0

(a)

Determine the system's initial configuration at ri = infinite particle separation and the system's final configuration at the point of closest approach.

Since the two-particle system is not being affected by any outside forces, we may treat it as an isolated system for momentum and use the momentum conservation law.

m1v1 + m1v2 = (m1+m2)v

The second particle's starting velocity is zero, so:

m1v1  = (m1+m2)v

After substituting the values we get,

v = 6i m/s

(b)

Since the two particle system is also energy-isolated, we may use the energy-conservation principle.

dK + dU = 0

Ki +Ui = Kf + Uf

Substituting the values,

1/2m1v1^2i + 1/2 m2v2^2i + 0 = 1/2m1v1^2f + 1/2m2v2^2f +ke q1q2/rf

The second particle's initial speed is 0 (v2 = 0). Additionally, both the first and second particle's final velocity have the same value, v. Put these values in place of the preceding expression:

1/2m1v1^2i  = 1/2m1v1^2 + 1/2m2v2^2 +ke q1q2/rf

After solving we get,

rf = 2ke q1q2 / m1v1^2 - (m1+m2)v^2

Substituting the values we get,

rf = 3.64m

(c)

v1f = (m1-m2 / m1 + m2) v1i

v1f  = -9i m/s

(d)

v2f =  (2m1/ m1 +m2) v1i

After substituting the values,

v2f = 12i m/ s

Question :

Review. From a large distance away, a particle of mass 2.00 g and charge 15.0 \muμC is fired at 21.0 m/s straight toward a second particle, originally stationary but free to move, with mass 5.00 g and charge 8.50 \muμC. Both particles are constrained to move only along the x axis. (a) At the instant of closest approach, both particles will be moving at the same velocity. Find this velocity. (b) Find the distance of closest approach. After the interaction, the particles will move far apart again. At this time, find the velocity of (c) the 2.00-g particle and (d) the 5.00-g particle. \hat{i}

To learn more about  momentum conservation law click on the link below:

brainly.com/question/7538238

#SPJ4

You might be interested in
A 2500-lb vehicle has a drag coefficient of 0.35 and a frontal area of 20 ft2. What is the minimum tractive effort required for
emmasim [6.3K]

Answer:

i put this in the calculator and my answer is 600. hope this helps

Explanation:

4 0
3 years ago
A circuit consists of a 12 V battery connected across a single resistor. If the current in the circuit is
finlep [7]

Answer:

4 Ohms

Explanation:

Apply the formula:

Voltage = I (current) . Resistance

You can change it the way you want to use for your purpose.

In this case...

R = V/I

R = 12/3

R = 4 Ohms (Ohm is the unit of measurement of eletrical resistance)

7 0
2 years ago
During a free fall Swati was accelerating at -9.8m/s2. After 120 seconds how far did she travel? Use the formula =1/2 *
marta [7]
Distance fallen = 1/2 ( V initial + V final ) *t
We know
a = -9.8 m/s2
t=120s

To find distance fallen, we need to find V final
Use the equation
V final = V initial + a*t
Substitute known values
V final = 0 + (-9.8)(120)
V final = -1176 m/s

Then plug known values to distance fallen equation
Distance fallen = 1/2 ( 0 + 1176 )(120)
= 1/2(1776)(120)
=106,560 m

This way plugging into distance equation is actually the long way. A faster way is to plug the values into
Distance fallen = V initial * t + 1/2(a*t)
We won't need to find V final using another equation.

But anyways, good luck!



4 0
3 years ago
if you have a kinetic energy of 1470 J, and you are 60kg mass and 0 m above the ground, what is you velocity?
laiz [17]

Answer:

The 39.

Explanation:

8 0
2 years ago
Read 2 more answers
A meter stick moves parallel to its axis with speed of 0.96 c relative to you. What would you measure for the length of the stic
Fed [463]

Answer:

The length of the stick is 0.28 m.

The time the stick take to move is 0.97 ns.

Explanation:

Given that,

Relative speed of stick v= 0.96 c

Speed of light c= 2.99793\times10^{8}\ m/s

Proper length of stick = 1 m

We need to calculate the length of the stick

Using formula of length

\Delta l=\Delta l_{0}\sqrt{(1-\dfrac{v^2}{c^2})}

Put the value into the formula

\Delta l=1\sqrt{1-\dfrac{(0.96)^2c^2}{c^2}}

\Delta l=1\sqrt{1-(0.96)^2}

\Delta l=0.28\ m

We need to calculate the time the stick take to move

Using formula of time

t=\dfrac{\Delta l}{v}

Put the value into the formula

t=\dfrac{0.28}{0.96\times(2.99793\times10^{8})}

t=9.72\times10^{-10}\ sec

t=0.97\ ns

Hence, The length of the stick is 0.28 m.

The time the stick take to move is 0.97 ns.

7 0
2 years ago
Other questions:
  • If I move 15ft foward, 15 ft backwards, 15 ft to the right, 15ft to the left where am I?
    7·2 answers
  • A sound wave has a frequency of 615 hz in air and a wavelength of 0.54 m. what is the temperature of the air? assume the velocit
    5·1 answer
  • An electron (mass m=9.11×10−31kg) is accelerated from the rest in the uniform field E⃗ (E=1.45×104N/C) between two thin parallel
    11·1 answer
  • The unit for measuring the rate at which light energy is radiated from a source is the
    5·1 answer
  • If an object doubles in mass, what happens to its inertia?
    14·1 answer
  • A carbon dioxide laser produces radiation with a wavelength of 1.06 x 104 nm. What is the frequency of this radiation?
    7·1 answer
  • A firework is ignited, and explodes with a flash and a loud bang as it is blown apart. The system consists of: the firework, the
    5·1 answer
  • Unpolarized light is passed through an optical filter that is oriented in the vertical direction.
    14·1 answer
  • During the course of a demonstration the professor is called away. When he returns he finds a beaker of water that was at room t
    10·1 answer
  • A dynamite blast blows a heavy rock straight up from the ground with a launch velocity of 160ft/sec. a) Write the height functio
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!