Answer:
0.06 Kg
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 0 m/s
Final velocity (v) = 3.0 m/s
Distance (s) = 0.09 m
Net Force (F) = 3 N
Mass (m) =?
Next, we shall determine the acceleration of the object. This can be obtained as follow:
Initial velocity (u) = 0 m/s
Final velocity (v) = 3.0 m/s
Distance (s) = 0.09 m
Acceleration (a) =?
v² = u² + 2as
3² = 0² + (2 × a × 0.09)
9 = 0 + 0.18a
9 = 0.18a
Divide both side by 0.18
a = 9 / 0.18
a = 50 m/s²
Finally, we shall determine the mass of the object. This can be obtained as follow:
Net Force (F) = 3 N
Acceleration (a) = 50 N
Mass (m) =?
F = ma
3 = m × 50
Divide both side by 50
m = 3 / 50
m = 0.06 Kg
Therefore, the mass of the object is 0.06 Kg
a) The kinetic energy (KE) of an object is expressed as the product of half of the mass (m) of the object and the square of its velocity (v²):

It is given:
v = 8.5 m/s
m = 91 kg
So:

b) We can calculate height by using the formula for potential energy (PE):
PE = m*g*h
In this case, h is eight, and PE is the same as KE:
PE = KE = 3,287.4 J
m = 91 kg
g = 9.81 m/s² - gravitational acceleration
h = ? - height
Now, let's replace those:
3,287.4= 91 * 9.81 * h
⇒ h = 3,287.4/(91*9.81) = 3,287.4/892.7 = 3.7 m
Answer:
B can take 0.64 sec for the longest nap .
Explanation:
Given that,
Total distance = 350 m
Acceleration of A = 1.6 m/s²
Distance = 30 m
Acceleration of B = 2.0 m/s²
We need to calculate the time for A
Using equation of motion

Put the value in the equation



We need to calculate the time for B
Using equation of motion
Put the value in the equation



We need to calculate the time for longest nap
Using formula for difference of time



Hence, B can take 0.64 sec for the longest nap .
Answer: It states that the BCD equivalent would be 0001000100000000000100010001000100010000000100000001000000000001.