Answer:
explanation of this effect is the photoelectric effect
Explanation:
Let's describe the process, when light of large wavelength falls, this implies a small energy, according to Planck's equation
E = h f =
the energy of the photons is not enough to carry out an electronic transition between two states of the material, when we decrease the wavelength (the energy of the photons increases), the point is reached where the energy of the beam is equal to some energy of a transition, by which the electrons are promoted and since we can see a certain charge, as the atoms are neutral, some electrons must be removed from the material, this is represented in the macroscopic case as the work function of the material, consequently a unbalanced load that is what we can measure.
When we increase the lightning intensity, what we do is that we increase the number of photons and if each photon can remove an electron, by removing the electrons the difference between it and the positive charge (fixed in the nuclei) increases.
We can analyze the interaction of the photon and the electron as a particular collision.
The explanation of this effect was made by Einstein in his explained of the photoelectric effect
Answer:
962291.57928 m²
Explanation:
= Pressure =
(full reflection)
I = Intensity = 
P = Power = 
c = Speed of light = 
M = Mass of Sun = 
m = Mass of ship = 1500 kg
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
Force of radiation is given by

This force will balance the gravitational force as stated in the question

The area of the must be 962291.57928 m²
Pretty sure it’s C. all the others are speeding up. acceleration means gradually (over time) getting faster. So it’s C.
You must run at least 53.3333333 meters a minute.
The instant it was dropped, the ball had zero speed.
After falling for 1 second, its speed was 9.8 m/s straight down (gravity).
Its AVERAGE speed for that 1 second was (1/2) (0 + 9.8) = 4.9 m/s.
Falling for 1 second at an average speed of 4.9 m/s, is covered <em>4.9 meters</em>.
ANYTHING you drop does that, if air resistance doesn't hold it back.