1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Assoli18 [71]
3 years ago
7

If the mass of the Earth somehow increased with no change in radius, your weight would

Physics
2 answers:
Margaret [11]3 years ago
5 0

Answer:

increase also

Explanation:

The weight of a person is equal to the gravitational pull exerted by the Earth on the person:

F=G\frac{mM}{R^2}

where

G=6.67\cdot 10^{-11} m^3 kg^{-1} s^{-2} is the gravitational constant

M is the mass of the Earth

m is the mass of the person

R is the Earth's radius

We notice that the weight is directly proportional to the mass of the Earth. Therefore, if the mass of the Earth M increases, and the radius R does not change, the weight of the person increases as well.

Sever21 [200]3 years ago
5 0

<u>Answer</u>

Increases also.

The force due to gravity is given by,

F = GM.m/r²

Where G is a constant of proportionality

∴ F ∝ M.m/r²

When r remains constant, force due to gravity, F, will be;

F ∝ M.m

Where M is the mass of the earth and m is your mass

Since your mass does not change, we are going to have;

F ∝ M.

This means the weight F is directly proportional to the mass of the earth. when it increases the your weight also increases.

You might be interested in
An airplane is moving at 350 km/hr. If a bomb is
Molodets [167]

Answers:

a) -171.402 m/s

b) 17.49 s

c) 1700.99 m

Explanation:

We can solve this problem with the following equations:

y=y_{o}+V_{oy}t-\frac{1}{2}gt^{2} (1)

x=V_{ox}t (2)

V_{f}=V_{oy}-gt (3)

Where:

y=0 m is the bomb's final jeight

y_{o}=1.5 km \frac{1000 m}{1 km}=1500 m is the bomb'e initial height

V_{oy}=0 m/s is the bomb's initial vertical velocity, since the airplane was moving horizontally

t is the time

g=9.8 m/s^{2} is the acceleration due gravity

x is the bomb's range

V_{ox}=350 \frac{km}{h} \frac{1000 m}{1 km} \frac{1 h}{3600 s}=97.22 m/s is the bomb's initial horizontal velocity

V_{f} is the bomb's fina velocity

Knowing this, let's begin with the answers:

<h3>b) Time</h3>

With the conditions given above, equation (1) is now written as:

y_{o}=\frac{1}{2}gt^{2} (4)

Isolating t:

t=\sqrt{\frac{2 y_{o}}{g}} (5)

t=\sqrt{\frac{2 (1500 m)}{9.8 m/s^{2}}} (6)

t=17.49 s (7)

<h3>a) Final velocity</h3>

Since V_{oy}=0 m/s, equation (3) is written as:

V_{f}=-gt (8)

V_{f}=-(97.22)(17.49 s) (9)

V_{f}=-171.402 m/s (10) The negative sign ony indicates the direction is downwards

<h3>c) Range</h3>

Substituting (7) in (2):

x=(97.22 m/s)(17.49 s) (11)

x=1700.99 m (12)

5 0
3 years ago
Help asapp!!!!!!!!!!!!!!
IRINA_888 [86]
Sorry don’t know this one
3 0
3 years ago
An above ground swimming pool of 30 ft diameter and 5 ft depth is to be filled from a garden hose (smooth interior) of length 10
STALIN [3.7K]

This question involves the concepts of dynamic pressure, volume flow rate, and flow speed.

It will take "5.1 hours" to fill the pool.

First, we will use the formula for the dynamic pressure to find out the flow speed of water:

P=\frac{1}{2}\rho v^2\\\\v=\sqrt{\frac{2P}{\rho}}

where,

v = flow speed = ?

P = Dynamic Pressure = 55 psi(\frac{6894.76\ Pa}{1\ psi}) = 379212 Pa

\rho = density of water = 1000 kg/m³

Therefore,

v=\sqrt{\frac{2(379212\ Pa)}{1000\ kg/m^3}}

v = 27.54 m/s

Now, we will use the formula for volume flow rate of water coming from the hose to find out the time taken by the pool to be filled:

\frac{V}{t} = Av\\\\t =\frac{V}{Av}

where,

t = time to fill the pool = ?

A = Area of the mouth of hose = \frac{\pi (0.015875\ m)^2}{4} = 1.98 x 10⁻⁴ m²

V = Volume of the pool = (Area of pool)(depth of pool) = A(1.524 m)

V = [\frac{\pi (9.144\ m)^2}{4}][1.524\ m] = 100.1 m³

Therefore,

t = \frac{(100.1\ m^3)}{(1.98\ x\ 10^{-4}\ m^2)(27.54\ m/s)}\\\\

<u>t = 18353.5 s = 305.9 min = 5.1 hours</u>

Learn more about dynamic pressure here:

brainly.com/question/13155610?referrer=searchResults

7 0
3 years ago
Which best describes a difference between laser light and regular light?
Inga [223]
The basic difference is that the ordinary sources are incoherent that means that the discrete frequencies merge up to give an intermediate between the maximum and minimum frequencies. While the laser is coherent containing the single frequency with maximum amplitude. thus travelling far.
4 0
3 years ago
If T, = 40 N, find T, and the mass of the weight (W).
seraphim [82]

Answer:4kg

Explanation:

acceleration due to gravity(g)=10m/s^2

Weight(w)=40N

Weight=mass x g

40=mass x 10

Divide both sides by 10

Mass =40/10

Mass=4kg

5 0
3 years ago
Other questions:
  • A basketball player can jump 1.6 m off the hardwood floor. With what upward velocity did he leave the floor?
    7·2 answers
  • If it took 125 seconds to complete 5 wave cycles, what is the period of the wave?
    14·1 answer
  • How to draw a heating curve​
    13·1 answer
  • a 450 kg piano is being unloaded from a truck by rolling it down a ramp at 22 degree inclined . there is negligible friction and
    9·1 answer
  • Basking in the sun, a 1.10 kg lizard lies on a flat rock tilted at an angle of 15.0° with respect to the horizontal. What is the
    13·1 answer
  • 1-A car with momentum 19016 kg*m/s has a mass of 1300kg. What is the speed
    11·1 answer
  • The ability to react with air is a
    9·2 answers
  • According to the Second Law of Thermodynamics, a. any process during which the entropy of the universe increases will be product
    5·1 answer
  • Three identical point charges of 2.0 μC are placed on the x-axis. The first charge is at the origin, the second to the right at
    5·1 answer
  • A car travels 8km in 7 minutes. Find the speed of the car.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!